METODA COROTATIONAL BEAM 2D UNTUK ANALISIS STATIK STRUKTUR NONLINIER GEOMETRIK
DOI:
https://doi.org/10.30536/j.jtd.2019.v17.a3117Keywords:
corotational beam, CBM 2D, nonlinear geometrik, analisis statik stukturAbstract
Makalah ini membahas sebuah metoda corotational beam dua dimensi (CBM 2D) yang dapat digunakan untuk analisis statik struktur yang nonlinier secara geometri. Kombinasi antara formulasi corotational beam dan Euler-Bernouli beam Theory (EBT) membuat implementasi numerik metoda ini menjadi sangat sederhana dengan beban komputasi yang rendah sehingga sangat praktis untuk diaplikasikan. Akurasi dan efisiensi metoda ini terverifikasi melalui beberapa uji numerik yang dilakukan pada beberapa model uji yang terdapat pada literatur. Metoda ini pun mampu memberikan hasil yang akurat untuk kasus extensible beam dan struktur beam yang dibebani follower load. Hasil penelitian ini memverifikasi validitas, efisiensi, dan kepraktisan dari metoda yang dikembangkan.References
Amoozgar, M. R., dan Shahverdi, H. (2016). Analysis of nonlinear fully intrinsic equations of
geometrically exact beams using generalized differential quadrature method. Acta Mechanica, Vol. 227
No. 5, 1265-1277. https://doi.org/10.1007/s00707-015-1528-7
Arbind, A., Reddy, J. N., dan Srinivasa, A. R. (2017). Nonlinear analysis of beams with rotation gradient
dependent potential energy for constrained micro-rotation. European Journal of Mechanics, A/Solids,
Vol. 65, 178-194.
https://doi.org/10.1016/j.euromechsol.2017.04.002
Babilio, E., dan Lenci, S. (2017). On the notion of curvature and its mechanical meaning in a
geometrically exact plane beam theory. International Journal of Mechanical Sciences, Vol. 128-129,
277-293. https://doi.org/10.1016/j.ijmecsci.2017.03.031
Beheshti, A. (2016). Large deformation analysis of strain-gradient elastic beams. Computers and
Structures, Vol. 177, 162-175.
https://doi.org/10.1016/j.compstruc.2016.07.013
Beléndez, T. , Neipp, C., dan Beléndez, A. (2003). Numerical and Experimental Analysis of a Cantilever
Beam: A Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials.
International Journal of Engineering Education, Vol. 19 No. 6, 885-892.
Chen, L. (2010). An integral approach for large deflection cantilever beams. International Journal of
Non-Linear Mechanics, Vol. 45 No. 3, 301-305. https://doi.org/10.1016/j.ijnonlinmec.2009.12.004
Jeon, H.M., Lee, Y., Lee, P.S., dan Bathe, K.J. (2015). The MITC3+ shell element in geometric nonlinear
analysis. Computers and Structures, Vol. 146, 91-104. https://doi.org/10.1016/ j.compstruc.2014.09.004
Ko, Y., Lee, P. S., dan Bathe, K. J. (2017). The MITC4+ shell element in geometric nonlinear analysis.
Computers and Structures, Vol. 185, 1-14.
https://doi.org/10.1016/j.compstruc.2017.01.015
Kondoh, K., dan Atluri, S. N. (1987). Large-deformation, elasto-plastic analysis of frames under
nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses.
Computational Mechanics, Vol. 2 No.1, 1-25.
https://doi.org/10.1007/BF00282040
Le, T. N. (2013). Nonlinear dynamics of lexible structures using corotational beam elements. Ph.D
Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
https://tel.archives-ouvertes.fr/tel-00954739
Le, T. N., Battini, J. M., dan Hjiaj, M. (2011). Efficient formulation for dynamics of corotational 2D beams.
Computational Mechanics, Vol. 48 No. 2, 153-161.
https://doi.org/10.1007/s00466-011-0585-6
Le, T. N., Battini, J. M., dan Hjiaj, M. (2012). Dynamics of 3D beam elements in a corotational context: A
comparative study of established and new formulations. Finite Elements in Analysis and Design, Vol.
61, 97-111. https://doi.org/10.1016/j.finel.2012.06.007
Levyakov, S. V. (2015). Formulation of a geometrically nonlinear 3D beam finite element based on
kinematic-group approach. Applied Mathematical Modelling, Vol. 39 No. 20, 6207-6222. https://doi.org/10.1016/j.apm.2015.01.064
Masjedi, P. K., dan Ovesy, H. R. (2015). Chebyshev collocation method for static intrinsic equations of
geometrically exact beams. International Journal of Solids and Structures, Vol. 54, 183-191. https://doi.org/10.1016/j.ijsolstr.2014.10.016
Masjedi, P. K., dan Ovesy, H. R. (2015). Large deflection analysis of geometrically exact spatial beams
under conservative and nonconservative loads using intrinsic equations. Acta Mechanica, Vol. 226 No.
6, 1689-1706.
https://doi.org/10.1007/s00707-014-1281-3
Nanakorn, P., dan Vu, L. N. (2006). A 2D field-consistent beam element for large displacement analysis
using the total Lagrangian formulation. Finite Elements in Analysis and Design, Vol. 42 No. 14-15,
1240-1247.
https://doi.org/10.1016/j.finel.2006.06.002
Ranjan, R. (2011). Nonlinear finite element analysis of bending of straight beams Using hp-spectral
approximations. Journal of Solid Mechanics, Vol. 3 No. 1, 96-113.
Yaw, L. L. (2009). 2D Corotational Beam Formulation, 1–17.
https://gab.wallawalla.edu/~louie.yaw/Co-rotational_docs/2Dcorot_beam.pdf, diakses pada tanggal 26
Maret 2016.
Zhou, X., Huang, K., dan Li, Z. (2018). Geometrically nonlinear beam analysis of composite wind turbine
blades based on quadrature element method. International Journal of Non-Linear Mechanics, Vol. 104,
87-99. https://doi.org/10.1016/j.ijnonlinmec.2018.05.007
Zupan, E., Saje, M., dan Zupan, D. (2012). Quaternion-based dynamics of geometrically nonlinear spatial
beams using the Runge-Kutta method. Finite Elements in Analysis and Design, Vol. 54, 48-60.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Novi Andria, Lavi R. Zuhal, Leonardo Gunawan, Hari Muhammad

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


