Organochlorine and pyrethroid residue in fish and sediment of Lake Singkarak, a tropical deep lake
DOI:
https://doi.org/10.55981/limnotek.2023.2084Keywords:
Bilih fish, Lake Singkarak, organochlorine, pyrethroid, sedimentAbstract
Agricultural activities still involve the use of synthetic pesticides to support the increase of their products. On the other hand, the use of synthetic pesticides such as organochlorines and pyrethroids may contribute to the decline of aquatic ecosystem health due to the accumulation of their residues in sediments and organisms. The current study aimed to assess the levels of organochlorine and pyrethroids pesticide residue in endemic fish and sediment from Lake Singkarak. Bilih fish and sediment samples were taken in June 2021 at ten (10) sampling sites in Lake Singkarak. The samples were extracted and analyzed by gas chromatography. Seven organochlorine compounds were measured, including aldrin, endrin, dieldrin, DDT, heptachlor, lindan, and endosulfan. Meanwhile, three compounds chosen from the pyrethroid group, cypermethrin, permethrin, and α-cypermethrin, were also measured. Four organochlorine compounds, aldrin, dieldrin, DDT, and endrin, were detected in bilih fish in three different sites. Dieldrin had the highest concentration at nd-0.007 mg/kg, followed by DDT, endrin, and aldrin. Meanwhile, in the sediments, no organochlorine compounds were detected from all observed sites. Pyrethroid compounds were detected in bilih fish at six sites. The compound with the highest concentration was permethrin (nd-0.02 mg/kg), followed by cypermethrin and α-cypermethrin. The surface sediment from three sites contained two pyrethroid residues, permethrin and α-cypermethrin, at nd-0.002 and nd-0.001 mg/kg, respectively. Our findings show that the residual levels of organochlorine and pyrethroid in bilih fish still meet the standards set by the Codex Alimentarius Commission (CAC). Nevertheless, Bilih fish accumulate more pesticide than surface sediment, so it is essential to be aware of their potential accumulation in the human body as the final consumer. Restriction on synthetic pesticide application is necessary to reduce its residue input into the lake waters for ecological and human health.
References
Abbassy MA, Khalifa MA, Nassar AMK, El-Deen EEN, Salim YM. 2021. Analysis of organochlorine pesticides residues in fish from Edko Lake (North of Egypt) using eco-friendly method and their health implications for humans. Toxicol Res. 37: 495-503. DOI: 10.1007/s43188-020-00085-8
Afful S, Awudza JAM, Osae S, Twumasi SK. 2013. Assessment of synthetic pyrethroids residues in the waters and sediments from the Weija Lake in Ghana. Eur. Chem. Bull.2: 183-187
Ahad K, Mohammad A, Mehboob F, Sattar A, Ahmad I. 2006. Pesticide Residues in Rawal Lake, Islamabad, Pakistan. Bull Environ Contam Toxicol 76: 463–470. DOI: 10.1007/s00128-006-0944-8
Akoto O, Azuur AA, Adotey KD. 2016. Pesticide residues in water, sediment and fish from Tono Reservoir and their health risk implications. Springerplus 5: 1849. DOI: 10.1186/s40064-016-3544-z
Ardiwinata A, Ginoga L, Sulaeman E, Harsanti E. 2020. Pesticide Residue Monitoring on Agriculture in Indonesia. Jurnal Sumberdaya Lahan 12: 133. DOI:10.21082/jsdl.v12n2.2018.133-144
Aydın F, Albay M. 2022. Accumulation of organochlorine pesticide (OCP) residues in surface water and sediment from the İznik Lake in Turkey. Environ Monit Assess 194: 872. DOI: 10.1007/s10661-022-10505-x
Barlas N, Çok I, Akbulut N. 2006. The contamination levels of organochlorine pesticides in water and sediment samples in Uluabat Lake, Turkey. Environ Monit Assess 118: 383-391. DOI: 10.1007/s10661-006-1504-8
Codex Alimentarius Commission (CAC) 39th Session. 2016. Maximum Residual Limits for Pesticides, Rome, Italy
Corcellas C, Eljarrat E, Barcelo D. 2015. First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ. Int. 75: 110-116. DOI: 10.1016/j.envint.2014.11.007
Costa LG. 2015. The neurotoxicity of organochlorine and pyrethroid pesticides. Handb Clin Neurol. 131: 135-148. DOI: 10.1016/B978-0-444-62627-1.00009-3
Dvoršćak M, Fingler S, Mendaš G, Stipičević S, Vasilić Ž, Drevenkar V. 2019. Distribution of Organochlorine Pesticide and Polychlorinated Biphenyl Residues in Lake Sediment Cores from the Plitvice Lakes National Park (Croatia). Arch Environ Contam Toxicol 77: 537-548. DOI: 10.1007/s00244-019-00668-z
Effendi H. 2003. Telaah kualitas air bagi pengelolaan sumber daya dan lingkungan perairan. Penerbit Kanisius: Yogyakarta
Egbe CC, Oyetibo GO, Ilori MO. 2021. Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicol Environ Saf. 207: 111319. DOI: 10.1016/j.ecoenv.2020.111319
Fernández-Bringas LM, Ponce-Vélez G, Calva LG, Salgado-Ugarte IH, Botello AV, Díaz González G. 2008. Organochlorine pesticides in lacustrine sediments and tilapias of Metztitlan, Hidalgo, Mexico. Rev Biol Trop. 56: 1381-1390. DOI: 10.15517/rbt.v56i3.5716
GA T. 2016. Residues analysis of organochlorine pesticides in fish, sediment and water samples from Tekeze Dam, Tigray, Ethiopia. Telkit. J Environ Anal Toxicol 6: 1000342. DOI: 10.4172/2161-0525.1000342
Hu C, Tao Y. 2023. Spatial-temporal occurrence and sources of organochlorine pesticides in the sediments of the largest deep lake (Lake Fuxian) in China. Environ Sci Pollut Res Int. 30: 31157-31170. DOI: 10.1007/s11356-022-24394-7
Ibrahim A, Syawal MS, Ardiwinata AN, Supriyono E, Taufik I, Yoga GP. 2022. Occurrence of organochlorine residues in surface water and mussel Corbicula sumatrana from Lake Singkarak, West Sumatera. IOP Conference Series Earth and Environmental Science 1118(1):012054
Jayaraj R, Megha P, Sreedev P. 2017. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol. 9: 90-100. DOI: 10.1515/intox-2016-0012
Kafilzadeh F. 2015. Assessment of organochlorine pesticide residues in water, sediments and fish from Lake Tashk, Iran. Achievements in the Life Sciences 9:107-111. DOI: 10.1016/j.als.2015.12.003
Li H, Wei Y, Lydy MJ, You J. 2014. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment. Environ Pollut. 190:19-26. DOI: 10.1016/j.envpol.2014.03.013
Li H, Cheng F, Wei Y, Lydy MJ, You J. 2017. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. J Hazard Mater 15: 258-271. DOI: 10.1016/j.jhazmat.2016.10.056
Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB. 2018. Pesticide toxicity: a mechanistic approach. EXCLI J. 17:1101-1136. DOI: 10.17179/excli2018-1710
Mahboob S, Niazi F, AlGhanim K, Sultana S, Al-Misned F, Ahmed Z. 2015. Health risks associated with pesticide residues in water, sediments and the muscle tissues of Catla catla at Head Balloki on the River Ravi. Environ Monit Assess. 187: 81. DOI: 10.1007/s10661-015-4285-0
Mensah NJ, Antwi-Akomeah S, Belford EJD, Sebiawu GE, Aabeyir R. 2021. Residual organochlorine pesticide contaminants profile in fish and sediment from a dam. Global J. Environ. Sci. Manage. 7: 273-286. DOI: 10.22034/gjesm.2021.02.09
Merga LB, Mengistie AA, Alemu MT, Van den Brink PJ. 2021. Biological and chemical monitoring of the ecological risks of pesticides in Lake Ziway, Ethiopia. Chemosphere. 266:129214. DOI: 10.1016/j.chemosphere.2020.129214
Mergia MT, Weldemariam ED, Eklo OM, Yimer GT. 2022. Pesticide residue levels in surface water, using a passive sampler and in the sediment along the littoral zone of Lake Ziway at selected sites. SN Appl Sci 4: 1–14. DOI: 10.1007/s42452-022-04966-5
Oginawati K, Susetyo SH, Rahmawati SI, Kurniawan SB, Abdullah SRS. 2022. Distribution of organochlorine pesticide pollution in water, sediment, mollusk, and fish at Saguling Dam, West Java, Indonesia. Toxicol Res 38: 149–157. DOI: 10.1007/s43188-021-00094-1
Pham MH, Sebesvari Z, Tu BM, Pham HV, Renaud FG. 2011. Pesticide pollution in agricultural areas of Northern Vietnam: case study in Hoang Liet and Minh Dai communes. Environ Pollut. 159: 3344-3350. DOI: 10.1016/j.envpol.2011.08.044
Riaz G, Tabinda AB, Kashif M, Yasar A, Mahmood A, Rasheed R, Khan MI, Iqbal J, Siddique S, Mahfooz Y. 2018. Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the river Chenab Pakistan. Environ Sci Pollut Res Int. 25: 22584-22597. DOI: 10.1007/s11356-018-1963-9
Shah ZU, Parveen S. Distribution and risk assessment of pesticide residues in sediment samples from river Ganga, India. PLoS One 18: e0279993. DOI: 10.1371/journal.pone.0279993
Sharma CM, Rosseland BO, Almvik M, Eklo OM. 2009. Bioaccumulation of organochlorine pollutants in the fish community in Lake Arungen, Norway. Environ Pollut. 157:2452-2458. DOI: 10.1016/j.envpol.2009.03.007
Shinggu DY, Maitera ON, Barminas JT. 2015. Determination of organochlorine pesticides residue in fish, water and sediment in lake Geriyo Adamawa state Nigeria. Int. Res. J. Pure Appl. Chem. 8: 212-220. DOI:10.9734/IRJPAC/2015/17100
Smith SL, MacDonald DD, Keenleyside KA, Ingersoll CG, Field LJ. 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J. Great Lakes Res.22: 624–638. DOI: 10.1016/S0380-1330(96)70985-1
Syawal MS, Ibrahim A, Yustiawati, Nasution SH, Taufik I, Saraswati M, Ardiwinata AN. 2023. Organophosphate pesticide residues in surface water and bilih fish (Mystacoleucus padangensis Blkr.) in Lake Singkarak, West Sumatra. IOP Conf. Ser.: Earth Environ. Sci. 1221 012080
Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D. 2018. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere. 191: 990-1007. DOI: 10.1016/j.chemosphere.2017.10.115
Taufik I. 2011. Pencemaran pestisida pada perairan perikanan di Sukabumi-Jawa Barat. Media Akuakultur 6: 69-75
Triharyuni S, Rahmadi P, Puspasari R, Rachmawati PF, Prianto E. 2022. Vulnerability of endemic bilih fish Mystacoleucus padangensis Bleeker, 1852 in Lake Singkarak, West Sumatra, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 1119 012010
van der Oost R, Beyer J, Vermeulen NP. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol.13: 57–149. DOI: 10.1016/s1382-6689(02)00126-6
Wang R, Zhang S, Xiao K, Cai M, Liu H. 2023. Occurrence, sources, and risk assessment of pyrethroid insecticides in surface water and tap water from Taihu Lake, China. J Environ Manage 325(Pt B): 116565. DOI: 10.1016/j.jenvman.2022.116565
Wils K, Daryono MR, Praet N, Santoso AB, Dianto A, Schmidt S, Vervoort M, Huang JS, Kusmanto E, Suandhi P, Natawidjaja DH, De Batist M. 2021. The sediments of Lake Singkarak and Lake Maninjau in West Sumatra reveal their earthquake, volcanic and rainfall history. Sedimentary Geology 416: 105863. DOI:10.1016/j.sedgeo.2021.105863
Xie W, Zhao J, Zhu X, Chen S, Yang X. Pyrethroid bioaccumulation in wild fish linked to geographic distribution and feeding habit. J Hazard Mater. 430: 128470. DOI: 10.1016/j.jhazmat.2022.128470
Yang C, Lim W, Song G. 2020. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp Biochem Physiol C Toxicol Pharmacol.234: 108758. DOI: 10.1016/j.cbpc.2020.108758
Downloads
Published
Issue
Section
License
Copyright (c) 2023 LIMNOTEK Perairan Darat Tropis di Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License.