CURRENT UNDERSTANDING IN THE ROLES OF WNT/RYK SIGNALING IN DEVELOPMENT AND HOMEOSTASIS
Main Article Content
Abstract
Wnt/Ryk signaling represents a critical yet underexplored branch of the Wnt pathway, with significant roles in embryonic development and tissue homeostasis. While canonical Wnt/β-catenin signaling has been extensively studied, emerging research highlights Ryk as a key noncanonical Wnt co-receptor influencing processes such as convergent extension, organogenesis, stem cell regulation, and inflammation. Wnt/Ryk signaling mediates diverse cellular outcomes through interactions with ligands like Wnt5a and Wnt11 and exhibits complex crosstalk with canonical pathways. Its dysregulation has been linked to developmental disorders, neurodegenerative diseases, and cancer progression. This review summarizes current insights into Wnt/Ryk function during development and homeostasis, highlights its relevance in human health, and identifies open questions regarding its molecular mechanisms and therapeutic potential. A deeper understanding of this pathway may offer novel strategies for regenerative medicine and targeted treatments for Wnt-related diseases.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Adamo A, Fiore D, De Martino F, Roscigno G, Affinito A, Donnarumma E, Puoti I, Ricci Vitiani L, Pallini R, Quintavalle C, Condorelli G (2017) RYK promotes the stemness of glioblastoma cells via the WNT/ β-catenin pathway. Onco-target 8(8):13476-13487. doi: 10.18632/oncotarget.14564
Caracci MO, Avila ME, Espinoza-Cavieres FA, López HR, Ugarte GD, Ferrari GVD (2021) Wnt/β-catenin-dependent transcription in autism spectrum dis-orders. Front. Mol. Neurosci 14:764756. doi: 10.3389/fnmol.2021.764756
Famili F, Perez LG, Naber BAE, Noorder-meer JN, Fradkin LG, Staal FJT (2016) The non-canonical Wnt recep-tor Ryk regulates hematopoietic stem cell repopulation in part by controlling proliferation and apoptosis. Cell Death Dis 7(11):e2479. doi: 10.1038/cddis.2016.380
Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, Yamamoto-Furusho JK, Romero-Avila MT, García-Sáinz JA, Robles-Flores M (2020) Canonical and non-canonical Wnt signaling are simulta-neously activated by Wnts in colon cancer cells. Cell Signalling 72:109636 doi: 10.1016/j.cellsig.2020.109636
Freisinger CM, Fisher RA, Slusarski DC (2010) Regulator of G protein signal-ing 3 modulates wnt5b calcium dy-namics and somite patterning. PLoS Genet 6(7):e1001020. doi: 10.1371/journal.pgen.1001020
Fu Y, Chen Y, Huang J, Cai Z, Wang Y (2020) RYK, a receptor of noncanoni-cal Wnt ligand Wnt5a, is positively correlated with gastric cancer tumor-igenesis and potential of liver metas-tasis. Am. J. Physiol 318(2):352-360. doi:10.1152/ajpgi.00228.2019
Goel C, Monga SP, Nejak-Bowen K (2022) Role and regulation of Wnt/β-Catenin in hepatic perivenous zonation and physiological homeostasis. Am J Pathol 192(1):4-17. doi: 10.1016/j.ajpath.2021.09.007
Green J, Nusse R, van Amerongen R (2014) The role of ryk and ror receptor tyrosine kinases in wnt signal trans-duction. Cold Spring Harb Perspect Biol 6:a009175. doi: 10.1101/cshperspect.a009175
Guo R, Xing QS (2022) Roles of Wnt signal-ing pathway and ROR2 receptor in embryonic development: an update review article. Epigenet Insights 31:15. doi: 10.1177/25168657211064232
Heisenberg CP, Nüsslein-Volhard C (1997) The function of silberblick in the posi-tioning of the eye anlage in the zebrafish embryo. Dev Biol 184(1):85-94. doi: 10.1006/dbio.1997.8511
Heisenberg CP, Tada M, Rauch GJ, Saúde L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Sil-berblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405(6782):76-81. doi: 10.1038/35011068
Hikasa H, Sokol SY (2013) Wnt signaling in vertebrate axis specification. Cold Spring Harb Perspect Biol 5(1):a007955. doi: 10.1101/cshperspect.a007955
Hu L, Chen W, Qian A, Li YP (2024) Wnt/β-catenin signaling components and mechanisms in bone formation, ho-meostasis, and disease. Bone Res 12:39. doi: 10.1038/s41413-024-00342-8
Jeong SY, Lyu J, Kim JA. Oh IH (2020) Ryk modulates the niche activity of mes-enchymal stromal cells by fine-tuning canonical Wnt signaling. Exp. Mol. Med 52:1140-1151. doi: 10.1038/s12276-020-0477-y
Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, Stacker SA, Cooper HM (2006) The Wnt re-ceptor Ryk is required for Wnt5a-mediated axon guidance on the con-tralateral side of the corpus callosum. J. Neurosci 26(21):5840-5848. doi: 10.1523/JNEUROSCI.1175-06.2006
Kim GH, Her JH, Han JK (2008) Ryk coop-erates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis conver-gent extension movements. J. Cell Biol 182(6):1073-1082. doi:10.1083/jcb.200710188
Kim HT, Panza P, Kikhi K, Nakamichi Y, Atzberger A, Guenther S, Ruppert C, Guenther A, Stainier DYR (2022) WNT/RYK signaling functions as an antiinflammatory modulator in the lung mesenchyme. PNAS 119(24):e2201707119. doi:10.1073/pnas.2201707119
Kim HT, Yin W, Nakamichi Y, Panza P, Grohmann B, Buettner C, Guenther S, Ruppert C, Kobayashi Y, Guenther A, Stainier DYR (2019) WNT/RYK sig-naling restricts goblet cell differentia-tion during lung development and re-pair. PNAS 116(51):25697-25706. doi: 10.1073/pnas.1911071116
Kugathasan K, Halford MM, Farlie PG, Bates D, Smith DP, Zhang YF, Roy JP, Macheda ML, Zhang D, Wilkinson JL, Kirby ML, Newgreen DF, Stacker SA (2018) Deficiency of the Wnt re-ceptor Ryk causes multiple cardiac and outflow tract defects. Growth Fac-tors 36(1-2):58-68. doi: 10.1080/08977194.2018.1491848
Kühl M, Sheldahl LC, Malbon CC, Moon RT (2000) Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem 275(17):12701-12711. doi: 10.1074/jbc.275.17.12701
Kumawat K, Gosens R (2016) WNT-5A: signaling and functions in health and disease. Cell. Mol. Life Sci 73:567-587. doi: 10.1007/s00018-015-2076-y
Lin S, Baye LM, Westfall TA, Slusarski DC (2010) Wnt5b–Ryk pathway provides directional signals to regulate gastru-lation movement. J. Cell Biol 190(2):263-278. doi: 10.1083/jcb.200912128
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G (2022) Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic oppor-tunities. Signal Transduction Targeted Ther 7(3):1-23. doi: 10.1038/s41392-021-00762-6
Lu W, Yamamoto V, Ortega B, Baltimore D (2004) Mammalian Ryk is a Wnt core-ceptor required for stimulation of neu-rite outgrowth. Cell 119:97–108. doi: 10.1016/j.cell.2004.09.019
Lyu J, Yamamoto V, Lu W (2008) Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev. Cell 15(5): 773-780. doi: 10.1016/j.devcel.2008.10.004
Macheda ML, Sun WW, Kugathasan K, Ho-gan BM, Bower NI, Halford MM, Zhang YF, Jacques BE, Lieschke GJ, Dabdoub A, Stacker SA (2012) The Wnt receptor Ryk plays a role in mammalian planar cell polarity signal-ing. J. Biol. Chem 287(35):29312-29323. doi: 10.1074/jbc.M112.362681
McGowan KP, Delgado E, Keeley TM, Hibdon ES, Turgeon DK, Stoffel EM, Samuelson LC (2023) Region-specific Wnt signaling responses promote gastric polyp formation in patients with familial adenomatous polyposis. JCI Insight 8(24):e174546. doi: 10.1172/jci.insight.174546
McKenzie MG, Cobbs LV, Dummer PD, Petros TJ, Halford MM, Stacker S, Zou Y, Fishell GJ, Au E (2020) Non-canonical wnt-signaling through ryk regulates the generation of somato-statin- and parvalbumin-expressing cortical interneurons. Neuron 103(5):853-864.e4. doi: 10.1016/j.neuron.2019.06.003
Miyashita T, Koda M, Kitajo K, Yamazaki M, Takahashi K, Kikuchi A, Yamashita T (2009) Wnt-Ryk signaling mediates axon growth inhibition and limits func-tional recovery after spinal cord injury. J. Neurotrauma 26:955-964. doi: 10.1089=neu.2008.0776955
Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tu-mor virus contain a provirus integrated in the same region of the host ge-nome. Cell 31:99-109. doi: 10.1016/0092-8674(82)90409-3
Patel S, Alam A, Pant R, Chattopadhyay S (2019) Wnt signaling and its signifi-cance within the tumor microenviron-ment: novel therapeutic insights. Front Immunol 10:2872. doi: 10.3389/fimmu.2019.02872
Pinheiro D, Heisenberg CP (2020) Zebrafish gastrulation: putting fate in motion. Curr Top Dev Biol 136:343-375. doi: 10.1016/bs.ctdb.2019.10.009
Pond KW, Doubrovinski K, Thorne CA (2020) Wnt/β-catenin signaling in tis-sue self-organization. Genes (Basel) 11(8):939. doi: 10.3390/genes11080939
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L,
Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL (2024) Canonical and noncanoni-cal Wnt signaling: Multilayered media-tors, signaling mechanisms and major signaling crosstalk. Genes & Dis 11(1):103-134. doi: 10.1016/j.gendis.2023.01.030
Schmitt AM, Shi J, Wolf AM, Lu CC, King LA, Zou Y (2006) Wnt–Ryk signalling mediates medial–lateral retinotectal topographic mapping. Nature 439:31-37. doi: 10.1038/nature04334
Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174-189. doi: 10.1101/gad.8.2.174
Thiele S, Zimmer A, Göbel A, Rachner TD, Rother S, Fuessel S, Froehner M, Wirth MP, Muders MH, Baretton GB, Jakob F, Rauner M, Hofbauer LC (2018) Role of WNT5A receptors FZD5 and RYK in prostate cancer cells. Oncotarget 9(43):27293-27304. doi: 10.18632/oncotarget.25551
Urbanek KD, Stilgenbauer S, Mertens D (2023) To β or Not to β: How im-portant is β-catenin dependent and independent WNT signaling in CLL? Cancers 15:194. doi: 10.3390/cancers15010194
Vallée A (2022) Neuroinflammation in schizophrenia: the key role of the WNT/β-catenin pathway. Int. J. Mol. Sci 23(5):2810. doi: 10.3390/ijms23052810
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H (2022) Wnt signal-ing in colorectal cancer: pathogenic role and therapeutic target. Mol. Can-cer 21:144. doi: 10.1186/s12943-022-01616-7