BIOACTIVE METABOLITES OF Lactiplantibacillus plantarum ISOLATED FROM Sonchus arvensis AS AN ANTIMICROBIAL AGENT
Main Article Content
Abstract
Sonchus arvensis is a plant widely found in Southeast Asia and often used in traditional medicine. Lactiplantibacillus plantarum is a bacteria isolated from S. arvensis and categorized as qualified presumption of safety by the European Food Safety Authority and the US Food and Drug Administration. Therefore, this study aimed to determine the bioactive metabolites of Lpb. plantarum as antimicrobial agents. Lactic acid bacteria (LAB) were isolated using the serial dilution method, followed by isolation and amplification of the DNA through a 16S rRNA universal primer. Antimicrobial activity was screened using the well-diffusion method. Plantaricin gene identification was performed using PCR and the determination of lactic acid content was conducted using Spectrophotometric. In addition, the titration method was used to measure and determine the hydrogen peroxide. The results showed that Lpb. plantarum had higher inhibition toward pathogen bacteria than Lc. lactis. Lpb. plantarum had the largest inhibition zone against B. subtillis, followed by S. aureus and E. coli, respectively. It was discovered that Lpb. plantarum precipitated with ammonium sulfate had a greater protein content and antibacterial activity. Furthermore, Lpb. plantarum, which encodes plnA and plnEF, produced lactic acid and hydrogen peroxide at concentrations of 3.0158±0.2774 mg/mL and 0.195±0.04 mg/mL, respectively.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU (2017) Antimicrobial potential of bac-teriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 49:1–11. https://doi.org/10.1016/j.ijantimicag.2016.08.016
Azizi F, Habibi Najafi MB, Edalatian Dovom MR (2017) The biodiversity of Lacto-bacillus spp. from Iranian raw milk Motal cheese and antibacterial evalu-ation based on bacteriocin-encoding genes. AMB Express 7:176. https://doi.org/10.1186/s13568-017-0474-2
Bengtsson T, Selegård R, Musa A, Hulten-by K, Utterström J, Sivlér P, Skog M, Nayeri F, Hellmark B, Söderquist B, Aili D, Khalaf H (2020) Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiot-ics. Sci Rep 10:3580. https://doi.org/10.1038/s41598-020-60570-w
Borshchevskaya LN, Gordeeva TL, Kalinina AN, Sineokii SP (2016) Spectropho-tometric determination of lactic acid. Journal of Analytical Chemistry 71:755–758. https://doi.org/10.1134/S1061934816080037
Bose N, Moore SD (2023) Variable Region Sequences Influence 16S rRNA Per-formance. Microbiol Spectr 11. https://doi.org/10.1128/spectrum.01252-23
Burgess RR (2009) Chapter 20 Protein Pre-cipitation Techniques. pp 331–342
Chen L, Liu R, Li S, Wu M, Yu H, Ge Q (2023) Metabolism of hydrogen perox-ide by Lactobacillus plantarum NJAU-01: A proteomics study. Food Micro-biol 112:104246. https://doi.org/https://doi.org/10.1016/j.fm.2023.104246
Cheung GYC, Bae JS, Otto M (2021) Path-ogenicity and virulence of Staphylo-coccus aureus. Virulence 12:547–569. https://doi.org/10.1080/21505594.2021.1878688
Cho G-S, Hanak A, Huch M, Holzapfel WH, Franz CMAP (2010) Investigation into the Potential of Bacteriocinogenic Lactobacillus plantarum BFE 5092 for Biopreservation of Raw Turkey Meat. Probiotics Antimicrob Proteins 2:241–249. https://doi.org/10.1007/s12602-010-9053-4
Choudhuri S (2014) Sequence Alignment and Similarity Searching in Genomic Databases. In: Bioinformatics for Be-ginners. Elsevier, pp 133–155
Dell’Anno M, Giromini C, Reggi S, Cavalleri M, Moscatelli A, Onelli E, Rebucci R, Sundaram TS, Coranelli S, Spalletta A, Baldi A, Rossi L (2021) Evaluation of Adhesive Characteristics of L. plantarum and L. reuteri Isolated from Weaned Piglets. Microorganisms 9:1587. https://doi.org/10.3390/microorganisms9081587
Di Biase M, Le Marc Y, Bavaro AR, Lonigro SL, Verni M, Postollec F, Valerio F (2022) Modeling of Growth and Or-ganic Acid Kinetics and Evolution of the Protein Profile and Amino Acid Content during Lactiplantibacillus plantarum ITM21B Fermentation in Liquid Sourdough. Foods 11:3942. https://doi.org/10.3390/foods11233942
Duong-Ly KC, Gabelli SB (2014) Salting out of Proteins Using Ammonium Sulfate Precipitation. pp 85–94
Ekblad B, Kyriakou PK, Oppegård C, Nis-sen-Meyer J, Kaznessis YN, Kristian-sen PE (2016) Structure–Function Analysis of the Two-Peptide Bacteri-ocin Plantaricin EF. Biochemistry 55:5106–5116. https://doi.org/10.1021/acs.biochem.6b00588
Erttmann SF, Gekara NO (2019) Hydrogen peroxide release by bacteria sup-presses inflammasome-dependent in-nate immunity. Nat Commun 10:3493. https://doi.org/10.1038/s41467-019-11169-x
Ezraty B, Gennaris A, Barras F, Collet J-F (2017) Oxidative stress, protein dam-age and repair in bacteria. Nat Rev Microbiol 15:385–396. https://doi.org/10.1038/nrmicro.2017.26
Goel A, Halami PM (2023) Structural and biosynthetic diversity of plantaricins from Lactiplantibacillus. Appl Microbiol Biotechnol 107:5635–5649. https://doi.org/10.1007/s00253-023-12692-0
Green MR, Sambrook J (2019) Analysis of DNA by Agarose Gel Electrophoresis. Cold Spring Harb Protoc 2019:pdb.top100388. https://doi.org/10.1101/pdb.top100388
Heeney DD, Yarov‐Yarovoy V, Marco ML (2019) Sensitivity to the two peptide bacteriocin plantaricin EF is depend-ent on CorC , a membrane‐bound, magnesium/cobalt efflux protein. Mi-crobiologyopen 8. https://doi.org/10.1002/mbo3.827
Hu C, Ren L, Zhou Y, Ye B (2019) Charac-terization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food. Food Sci Nutr 7:1997–2005. https://doi.org/10.1002/fsn3.1025
Irmayanti Harahap N (2020) SKRINING DAN KARAKTERISASI SIMPLISIA DAUN TEMPUYUNG (Sonchus arvensis.L). JIFI (Jurnal Ilmiah Farma-si Imelda) 3:42–47. https://doi.org/10.52943/jifarmasi.v3i2.212
Jiang H, Tang X, Zhou Q, Zou J, Li P, Breukink E, Gu Q (2018) Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Appl Microbiol Biotechnol 102:7465–7473. https://doi.org/10.1007/s00253-018-9182-3
Johnson JS, Spakowicz DJ, Hong B-Y, Pe-tersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Wein-stock GM (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10:5029. https://doi.org/10.1038/s41467-019-13036-1
Jung K, Kim A, Lee J-H, Cho D, Seo J, Jung ES, Kang H, Roh J, Kim W (2022) Effect of Oral Intake of Lacti-plantibacillus plantarum APsulloc 331261 (GTB1TM) on Diarrhea-Predominant Irritable Bowel Syn-drome: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 14:2015. https://doi.org/10.3390/nu14102015
Kaźmierczak-Siedlecka K, Daca A, Fol-warski M, Witkowski JM, Bryl E, Makarewicz W (2020) The role of Lac-tobacillus plantarum 299v in support-ing treatment of selected diseases. Central European Journal of Immunology 45:488–493. https://doi.org/10.5114/ceji.2020.101515
Kim E, Chang HC, Kim H-Y (2020) Com-plete Genome Sequence of Lactoba-cillus plantarum EM, A Putative Pro-biotic Strain with the Cholesterol-Lowering Effect and Antimicrobial Ac-tivity. Curr Microbiol 77:1871–1882. https://doi.org/10.1007/s00284-020-02000-8
Kuley E, Özyurt G, Özogul I, Boga M, Akyol I, Rocha JM, Özogul F (2020) The Role of Selected Lactic Acid Bacteria on Organic Acid Accumulation during Wet and Spray-Dried Fish-Based Si-lages. Contributions to the Winning Combination of Microbial Food Safety and Environmental Sustainability. Mi-croorganisms 8:172. https://doi.org/10.3390/microorganisms8020172
Lages AC, Mustopa AZ, Sukmarini L, Su-harsono (2015) Cloning and Expres-sion of Plantaricin W Produced by Lactobacillus plantarum U10 Isolate from “Tempoyak” Indonesian Fer-mented Food as Immunity Protein in Lactococcus lactis. Appl Biochem Bio-technol 177:909–922. https://doi.org/10.1007/s12010-015-1786-9
Lei S, Zhao R, Sun J, Ran J, Ruan X, Zhu Y (2020) Partial purification and charac-terization of a broad‐spectrum bacte-riocin produced by a Lactobacillus plantarum zrx03 isolated from infant’s feces. Food Sci Nutr 8:2214–2222. https://doi.org/10.1002/fsn3.1428
Li H, Sun X, Liao X, Gänzle M (2020) Con-trol of pathogenic and spoilage bacte-ria in meat and meat products by high pressure: Challenges and future per-spectives. Compr Rev Food Sci Food Saf 19:3476–3500. https://doi.org/10.1111/1541-4337.12617
Li Z, Jiang L, Wei L, Ohno T, Syaputri Y, Horie M, Iwahashi H (2021) Control-ling the microbial composition during the fermentation of Ishizuchi-kurocha. Biosci Biotechnol Biochem 86:117–124. https://doi.org/10.1093/bbb/zbab184
Malik A, Sumayyah S, Yeh C-W, Heng NCK (2016) Identification and sequence analysis of pWcMBF8-1, a bacterioc-in-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol Lett 363:fnw059. https://doi.org/10.1093/femsle/fnw059
Meng F, Liu Y, Nie T, Tang C, Lyu F, Bie X, Lu Y, Zhao M, Lu Z (2022) Plantaricin A, Derived from Lactiplantibacillus plantarum, Reduces the Intrinsic Re-sistance of Gram-Negative Bacteria to Hydrophobic Antibiotics. Appl Environ Microbiol 88. https://doi.org/10.1128/aem.00371-22
Miranti M, Iwahashi H, Syaputri Y (2022) Antimicrobial activity of Latilactobacil-lus sakei isolated from virgin coconut oil under pH and temperature stress. Korean Journal of Food Preservation 29:852–860. https://doi.org/10.11002/kjfp.2022.29.6.852
Mokoena MP (2017) Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Mole-cules 22. https://doi.org/10.3390/molecules22081255
Moon Y, Heo S, Park H-J, Park HW, Jeong D-W (2023) Novel Strain Leuconostoc lactis DMLL10 from Traditional Kore-an Fermented Kimchi as a Starter Candidate for Fermented Foods. J Mi-crobiol Biotechnol 33:1625–1634. https://doi.org/10.4014/jmb.2306.06056
Nordström EA, Teixeira C, Montelius C, Jeppsson B, Larsson N (2021) Lacti-plantibacillus plantarum 299v (LP299V®): three decades of re-search. Benef Microbes 12:441–466. https://doi.org/10.3920/BM2020.0191
Oppegård C, Kjos M, Veening J-W, Nissen-Meyer J, Kristensen T (2016) A puta-tive amino acid transporter determines sensitivity to the two-peptide bacteri-ocin plantaricin JK. Microbiologyopen 5:700–708. https://doi.org/10.1002/mbo3.363
Regueira‐Iglesias A, Balsa‐Castro C, Blan-co‐Pintos T, Tomás I (2023) Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Mol Oral Microbiol 38:347–399. https://doi.org/10.1111/omi.12434
Sand SL, Oppegård C, Ohara S, Iijima T, Naderi S, Blomhoff HK, Nissen-Meyer J, Sand O (2010) Plantaricin A, a pep-tide pheromone produced by Lactoba-cillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells. Peptides (NY) 31:1237–1244. https://doi.org/10.1016/j.peptides.2010.04.010
Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D (2017) Lactobacil-lus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimi-crob Proteins 9:111–122. https://doi.org/10.1007/s12602-017-9264-z
Song D-F, Zhu M-Y, Gu Q (2014) Purifica-tion and Characterization of Plantari-cin ZJ5, a New Bacteriocin Produced by Lactobacillus plantarum ZJ5. PLoS One 9:e105549. https://doi.org/10.1371/journal.pone.0105549
Stankovic M, Veljovic K, Popovic N, Kojic S, Dunjic Manevski S, Radojkovic D, Golic N (2022) Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 Exhibit Anti-Inflammatory Effect by Attenuation of NF-κB and MAPK Signaling in Human Bronchial Epithelial Cells. Int J Mol Sci 23:5547. https://doi.org/10.3390/ijms23105547
Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koo-nin E V., Davis RW (1998) Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia tra-chomatis. Science (1979) 282:754–759. https://doi.org/10.1126/science.282.5389.754
Stülke J, Grüppen A, Bramkamp M, Pelzer S (2023) Bacillus subtilis, a Swiss Army Knife in Science and Biotech-nology. J Bacteriol 205. https://doi.org/10.1128/jb.00102-23
Sulistiani S (2017) Senyawa antibakteri yang diproduksi oleh Lactobacillus plantarum dan aplikasinya untuk pengawetan bahan ikan. J Biologi In-dones 13:233–240
Syaputri Y, Iwahashi H (2020) Characteris-tics of heterologous plantaricin from Lactobacillus plantarum. Reviews in Agricultural Science 8:124–137. https://doi.org/10.7831/ras.8.0_124
Syaputri Y, Lei J, Hasegawa T, Fauzia S, Ratningsih N, Erawan TS, Iwahashi H (2023) Characterization of Plantaricin Genes and Lactic Acid Production by Lactiplantibacillus plantarum strains Isolated from Ishizuchi-Kurocha. Ap-plied Food Biotechnology 10:21–31. https://doi.org/https://doi.org/10.22037/afb.v10i1.39166
Syaputri Y, Niwa R, Iwahashi H (2021a) Ef-fect of pH and Salinity on Lactic Acid Production and Multiplication of Plantaricin Plasmid Genes of Lacto-bacillus plantarum COY 2906 isolated from Virgin Coconut Oil. Res J Bio-technol 1–9. https://doi.org/10.25303/169rjbt001009
Syaputri Y, Parwi P, Iwahashi H (2021b) Plantaricin A of Lactobacillus planta-rum IYP1718 playing a role in control-ling undesirable organisms in soil. Res J Biotechnol 16:141–147
Szczerbiec D, Piechocka J, Głowacki R, Torzewska A (2022) Organic Acids Secreted by Lactobacillus spp. Isolat-ed from Urine and Their Antimicrobial Activity against Uropathogenic Pro-teus mirabilis. Molecules 27:5557. https://doi.org/10.3390/molecules27175557
Van Reenen CA, Chikindas ML, Van Zyl WH, Dicks LMT (2003) Characteriza-tion and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol 81:29–40. https://doi.org/10.1016/S0168-1605(02)00164-2
Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU (2017) Antimicrobial potential of bac-teriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 49:1–11. https://doi.org/10.1016/j.ijantimicag.2016.08.016
Azizi F, Habibi Najafi MB, Edalatian Dovom MR (2017) The biodiversity of Lacto-bacillus spp. from Iranian raw milk Motal cheese and antibacterial evalu-ation based on bacteriocin-encoding genes. AMB Express 7:176. https://doi.org/10.1186/s13568-017-0474-2
Bengtsson T, Selegård R, Musa A, Hulten-by K, Utterström J, Sivlér P, Skog M, Nayeri F, Hellmark B, Söderquist B, Aili D, Khalaf H (2020) Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiot-ics. Sci Rep 10:3580. https://doi.org/10.1038/s41598-020-60570-w
Borshchevskaya LN, Gordeeva TL, Kalinina AN, Sineokii SP (2016) Spectropho-tometric determination of lactic acid. Journal of Analytical Chemistry 71:755–758. https://doi.org/10.1134/S1061934816080037
Bose N, Moore SD (2023) Variable Region Sequences Influence 16S rRNA Per-formance. Microbiol Spectr 11. https://doi.org/10.1128/spectrum.01252-23
Burgess RR (2009) Chapter 20 Protein Pre-cipitation Techniques. pp 331–342
Chen L, Liu R, Li S, Wu M, Yu H, Ge Q (2023) Metabolism of hydrogen perox-ide by Lactobacillus plantarum NJAU-01: A proteomics study. Food Micro-biol 112:104246. https://doi.org/https://doi.org/10.1016/j.fm.2023.104246
Cheung GYC, Bae JS, Otto M (2021) Path-ogenicity and virulence of Staphylo-coccus aureus. Virulence 12:547–569. https://doi.org/10.1080/21505594.2021.1878688
Cho G-S, Hanak A, Huch M, Holzapfel WH, Franz CMAP (2010) Investigation into the Potential of Bacteriocinogenic Lactobacillus plantarum BFE 5092 for Biopreservation of Raw Turkey Meat. Probiotics Antimicrob Proteins 2:241–249. https://doi.org/10.1007/s12602-010-9053-4
Choudhuri S (2014) Sequence Alignment and Similarity Searching in Genomic Databases. In: Bioinformatics for Be-ginners. Elsevier, pp 133–155
Dell’Anno M, Giromini C, Reggi S, Cavalleri M, Moscatelli A, Onelli E, Rebucci R, Sundaram TS, Coranelli S, Spalletta A, Baldi A, Rossi L (2021) Evaluation of Adhesive Characteristics of L. plantarum and L. reuteri Isolated from Weaned Piglets. Microorganisms 9:1587. https://doi.org/10.3390/microorganisms9081587
Di Biase M, Le Marc Y, Bavaro AR, Lonigro SL, Verni M, Postollec F, Valerio F (2022) Modeling of Growth and Or-ganic Acid Kinetics and Evolution of the Protein Profile and Amino Acid Content during Lactiplantibacillus plantarum ITM21B Fermentation in Liquid Sourdough. Foods 11:3942. https://doi.org/10.3390/foods11233942
Duong-Ly KC, Gabelli SB (2014) Salting out of Proteins Using Ammonium Sulfate Precipitation. pp 85–94
Ekblad B, Kyriakou PK, Oppegård C, Nis-sen-Meyer J, Kaznessis YN, Kristian-sen PE (2016) Structure–Function Analysis of the Two-Peptide Bacteri-ocin Plantaricin EF. Biochemistry 55:5106–5116. https://doi.org/10.1021/acs.biochem.6b00588
Erttmann SF, Gekara NO (2019) Hydrogen peroxide release by bacteria sup-presses inflammasome-dependent in-nate immunity. Nat Commun 10:3493. https://doi.org/10.1038/s41467-019-11169-x
Ezraty B, Gennaris A, Barras F, Collet J-F (2017) Oxidative stress, protein dam-age and repair in bacteria. Nat Rev Microbiol 15:385–396. https://doi.org/10.1038/nrmicro.2017.26
Goel A, Halami PM (2023) Structural and biosynthetic diversity of plantaricins from Lactiplantibacillus. Appl Microbiol Biotechnol 107:5635–5649. https://doi.org/10.1007/s00253-023-12692-0
Green MR, Sambrook J (2019) Analysis of DNA by Agarose Gel Electrophoresis. Cold Spring Harb Protoc 2019:pdb.top100388. https://doi.org/10.1101/pdb.top100388
Heeney DD, Yarov‐Yarovoy V, Marco ML (2019) Sensitivity to the two peptide bacteriocin plantaricin EF is depend-ent on CorC , a membrane‐bound, magnesium/cobalt efflux protein. Mi-crobiologyopen 8. https://doi.org/10.1002/mbo3.827
Hu C, Ren L, Zhou Y, Ye B (2019) Charac-terization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food. Food Sci Nutr 7:1997–2005. https://doi.org/10.1002/fsn3.1025
Irmayanti Harahap N (2020) SKRINING DAN KARAKTERISASI SIMPLISIA DAUN TEMPUYUNG (Sonchus arvensis.L). JIFI (Jurnal Ilmiah Farma-si Imelda) 3:42–47. https://doi.org/10.52943/jifarmasi.v3i2.212
Jiang H, Tang X, Zhou Q, Zou J, Li P, Breukink E, Gu Q (2018) Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Appl Microbiol Biotechnol 102:7465–7473. https://doi.org/10.1007/s00253-018-9182-3
Johnson JS, Spakowicz DJ, Hong B-Y, Pe-tersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Wein-stock GM (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10:5029. https://doi.org/10.1038/s41467-019-13036-1
Jung K, Kim A, Lee J-H, Cho D, Seo J, Jung ES, Kang H, Roh J, Kim W (2022) Effect of Oral Intake of Lacti-plantibacillus plantarum APsulloc 331261 (GTB1TM) on Diarrhea-Predominant Irritable Bowel Syn-drome: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 14:2015. https://doi.org/10.3390/nu14102015
Kaźmierczak-Siedlecka K, Daca A, Fol-warski M, Witkowski JM, Bryl E, Makarewicz W (2020) The role of Lac-tobacillus plantarum 299v in support-ing treatment of selected diseases. Central European Journal of Immunology 45:488–493. https://doi.org/10.5114/ceji.2020.101515
Kim E, Chang HC, Kim H-Y (2020) Com-plete Genome Sequence of Lactoba-cillus plantarum EM, A Putative Pro-biotic Strain with the Cholesterol-Lowering Effect and Antimicrobial Ac-tivity. Curr Microbiol 77:1871–1882. https://doi.org/10.1007/s00284-020-02000-8
Kuley E, Özyurt G, Özogul I, Boga M, Akyol I, Rocha JM, Özogul F (2020) The Role of Selected Lactic Acid Bacteria on Organic Acid Accumulation during Wet and Spray-Dried Fish-Based Si-lages. Contributions to the Winning Combination of Microbial Food Safety and Environmental Sustainability. Mi-croorganisms 8:172. https://doi.org/10.3390/microorganisms8020172
Lages AC, Mustopa AZ, Sukmarini L, Su-harsono (2015) Cloning and Expres-sion of Plantaricin W Produced by Lactobacillus plantarum U10 Isolate from “Tempoyak” Indonesian Fer-mented Food as Immunity Protein in Lactococcus lactis. Appl Biochem Bio-technol 177:909–922. https://doi.org/10.1007/s12010-015-1786-9
Lei S, Zhao R, Sun J, Ran J, Ruan X, Zhu Y (2020) Partial purification and charac-terization of a broad‐spectrum bacte-riocin produced by a Lactobacillus plantarum zrx03 isolated from infant’s feces. Food Sci Nutr 8:2214–2222. https://doi.org/10.1002/fsn3.1428
Li H, Sun X, Liao X, Gänzle M (2020) Con-trol of pathogenic and spoilage bacte-ria in meat and meat products by high pressure: Challenges and future per-spectives. Compr Rev Food Sci Food Saf 19:3476–3500. https://doi.org/10.1111/1541-4337.12617
Li Z, Jiang L, Wei L, Ohno T, Syaputri Y, Horie M, Iwahashi H (2021) Control-ling the microbial composition during the fermentation of Ishizuchi-kurocha. Biosci Biotechnol Biochem 86:117–124. https://doi.org/10.1093/bbb/zbab184
Malik A, Sumayyah S, Yeh C-W, Heng NCK (2016) Identification and sequence analysis of pWcMBF8-1, a bacterioc-in-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol Lett 363:fnw059. https://doi.org/10.1093/femsle/fnw059
Meng F, Liu Y, Nie T, Tang C, Lyu F, Bie X, Lu Y, Zhao M, Lu Z (2022) Plantaricin A, Derived from Lactiplantibacillus plantarum, Reduces the Intrinsic Re-sistance of Gram-Negative Bacteria to Hydrophobic Antibiotics. Appl Environ Microbiol 88. https://doi.org/10.1128/aem.00371-22
Miranti M, Iwahashi H, Syaputri Y (2022) Antimicrobial activity of Latilactobacil-lus sakei isolated from virgin coconut oil under pH and temperature stress. Korean Journal of Food Preservation 29:852–860. https://doi.org/10.11002/kjfp.2022.29.6.852
Mokoena MP (2017) Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Mole-cules 22. https://doi.org/10.3390/molecules22081255
Moon Y, Heo S, Park H-J, Park HW, Jeong D-W (2023) Novel Strain Leuconostoc lactis DMLL10 from Traditional Kore-an Fermented Kimchi as a Starter Candidate for Fermented Foods. J Mi-crobiol Biotechnol 33:1625–1634. https://doi.org/10.4014/jmb.2306.06056
Nordström EA, Teixeira C, Montelius C, Jeppsson B, Larsson N (2021) Lacti-plantibacillus plantarum 299v (LP299V®): three decades of re-search. Benef Microbes 12:441–466. https://doi.org/10.3920/BM2020.0191
Oppegård C, Kjos M, Veening J-W, Nissen-Meyer J, Kristensen T (2016) A puta-tive amino acid transporter determines sensitivity to the two-peptide
bacteriocin plantaricin JK. Microbiolo-gyopen 5:700–708. https://doi.org/10.1002/mbo3.363
Regueira‐Iglesias A, Balsa‐Castro C, Blan-co‐Pintos T, Tomás I (2023) Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Mol Oral Microbiol 38:347–399. https://doi.org/10.1111/omi.12434
Sand SL, Oppegård C, Ohara S, Iijima T, Naderi S, Blomhoff HK, Nissen-Meyer J, Sand O (2010) Plantaricin A, a pep-tide pheromone produced by Lactoba-cillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells. Peptides (NY) 31:1237–1244. https://doi.org/10.1016/j.peptides.2010.04.010
Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D (2017) Lactobacil-lus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimi-crob Proteins 9:111–122. https://doi.org/10.1007/s12602-017-9264-z
Song D-F, Zhu M-Y, Gu Q (2014) Purifica-tion and Characterization of Plantari-cin ZJ5, a New Bacteriocin Produced by Lactobacillus plantarum ZJ5. PLoS One 9:e105549. https://doi.org/10.1371/journal.pone.0105549
Stankovic M, Veljovic K, Popovic N, Kojic S, Dunjic Manevski S, Radojkovic D, Golic N (2022) Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 Exhibit Anti-Inflammatory Effect by Attenuation of NF-κB and MAPK Signaling in Human Bronchial Epithelial Cells. Int J Mol Sci 23:5547. https://doi.org/10.3390/ijms23105547
Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koo-nin E V., Davis RW (1998) Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia tra-chomatis. Science (1979) 282:754–759. https://doi.org/10.1126/science.282.5389.754
Stülke J, Grüppen A, Bramkamp M, Pelzer S (2023) Bacillus subtilis, a Swiss Army Knife in Science and Biotech-nology. J Bacteriol 205. https://doi.org/10.1128/jb.00102-23
Sulistiani S (2017) Senyawa antibakteri yang diproduksi oleh Lactobacillus plantarum dan aplikasinya untuk pengawetan bahan ikan. J Biologi In-dones 13:233–240
Syaputri Y, Iwahashi H (2020) Characteris-tics of heterologous plantaricin from Lactobacillus plantarum. Reviews in Agricultural Science 8:124–137. https://doi.org/10.7831/ras.8.0_124
Syaputri Y, Lei J, Hasegawa T, Fauzia S, Ratningsih N, Erawan TS, Iwahashi H (2023) Characterization of Plantaricin Genes and Lactic Acid Production by Lactiplantibacillus plantarum strains Isolated from Ishizuchi-Kurocha. Ap-plied Food Biotechnology 10:21–31. https://doi.org/https://doi.org/10.22037/afb.v10i1.39166
Syaputri Y, Niwa R, Iwahashi H (2021a) Ef-fect of pH and Salinity on Lactic Acid Production and Multiplication of Plantaricin Plasmid Genes of Lacto-bacillus plantarum COY 2906 isolated from Virgin Coconut Oil. Res J Bio-technol 1–9. https://doi.org/10.25303/169rjbt001009
Syaputri Y, Parwi P, Iwahashi H (2021b) Plantaricin A of Lactobacillus planta-rum IYP1718 playing a role in control-ling undesirable organisms in soil. Res J Biotechnol 16:141–147
Szczerbiec D, Piechocka J, Głowacki R, Torzewska A (2022) Organic Acids Secreted by Lactobacillus spp. Isolat-ed from Urine and Their Antimicrobial Activity against Uropathogenic Pro-teus mirabilis. Molecules 27:5557. https://doi.org/10.3390/molecules27175557
Van Reenen CA, Chikindas ML, Van Zyl WH, Dicks LMT (2003) Characteriza-tion and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol 81:29–40. https://doi.org/10.1016/S0168-1605(02)00164-2
Varliero G, Lebre PH, Stevens MI, Czechowski P, Makhalanyane T, Cowan DA (2023) The use of different 16S rRNA gene variable regions in biogeographical studies. Environ Microbiol Rep 15:216–228. https://doi.org/10.1111/1758-2229.13145
Yang S-C, Lin C-H, Aljuffali IA, Fang J-Y (2017) Current pathogenic Escherich-ia coli foodborne outbreak cases and therapy development. Arch Microbiol 199:811–825. https://doi.org/10.1007/s00203-017-1393-y
Zhang C, Zhang S, Liu W, Guo T, Gu R, Kong J (2019) Potential Application and Bactericidal Mechanism of Lactic Acid–Hydrogen Peroxide Consortium. Appl Biochem Biotechnol 189:822–833. https://doi.org/10.1007/s12010-019-03031-z
Zhang W, Liu M, Dai X (2013) Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish. Bra-zilian Journal of Microbiology 44:685–691. https://doi.org/10.1590/S1517-83822013005000053
Zhang X, Wang Y, Liu L, Wei Y, Shang N, Zhang X, Li P (2016) Two-peptide bacteriocin PlnEF causes cell mem-brane damage to Lactobacillus planta-rum. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858:274–280. https://doi.org/10.1016/j.bbamem.2015.11.018
Zhang Y, Yang H, Huang R, Wang X, Ma C, Zhang F (2022) Effects of Lactiplanti-bacillus plantarum and Lactiplanti-bacillus brevis on fermentation, aero-bic stability, and the bacterial commu-nity of paper mulberry silage. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.1063914
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lacto-bacillus: Description of 23 novel gene-ra, emended description of the genus Lactobacillus Beijerinck 1901, and un-ion of Lactobacillaceae and Leuco-nostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107