PENGARUH KOMPOSISI AP TERHADAP PROSESIBILITAS SLURRY PROPELAN DENGAN KANDUNGAN ALUMINIUM TINGGI (EFFECTS OF AMMONIUM PERCHLORATE COMPOSITION ON HIGH CONTENT ALUMINIUM PROPELLANT SLURRY)

Authors

  • Afni Restasari Pusat Teknologi Roket Lembaga Penerbangan dan Antariksa Nasional Jl. Raya LAPAN No. 2, Mekarsari, Rumpin, Bogor 16350 Indonesia
  • Rika Suwana Budi Pusat Teknologi Roket Lembaga Penerbangan dan Antariksa Nasional Jl. Raya LAPAN No. 2, Mekarsari, Rumpin, Bogor 16350 Indonesia
  • Kendra Hartaya Pusat Teknologi Roket Lembaga Penerbangan dan Antariksa Nasional Jl. Raya LAPAN No. 2, Mekarsari, Rumpin, Bogor 16350 Indonesia

DOI:

https://doi.org/10.30536/j.jtd.2017.v0.a2509

Keywords:

Slurry propelan, pseudoplastisitas, viskositas, pot life

Abstract

Sebagai padatan pengisi propelan, Ammonium perklorat (AP) dapat mempengaruhi sifat fluida dari slurry propelan yang penting dalam pencetakan untuk menghasilkan propelan yang homogen. Oleh karena itu, penelitian ini bertujuan untuk menemukan pengaruh komposisi AP (AP halus (APh): AP kasar(APk)) terhadap sifat fluida slurry yang meliputi viskositas, pot life dan indeks pseudoplastisitas. Dalam penelitian ini, dibuat slurry propelan A (AP: AP1:2), propelan B (AP: AP1:1), propelan C (AP: AP3:2) dan propelan D (AP: AP2:1). Metode yang digunakan meliputi pengukuran viskositas dengan viskometer Brookfield RVT spindle 07 pada 0,3 rpm setiap 15 menit. Sementara, di menit ke-35, viskositas pada 0,3; 0,5 dan 0,6 rpm diukur. Berdasarkan data tersebut, grafik ln viskositas vs waktu serta viskositas vs shear rate dibuat untuk menentukan persamaan viscosity build-up dan Power Law. Diketahui, nilai viskositas awal propelan dalam jangkauan 11.493 – 52945 P, dengan viskositas terendah dan pot life (13,12 menit) dimiliki oleh propelan A. Sementara, nilai indeks pseudoplastisitas propelan yang jangkauan 0,655 – 0,991, nilai terendahnya ditunjukkan oleh propelan D dan tertingginya ditunjukkan oleh propelan B, yang mana propelan A diketahui tidak sesuai untuk pencetakan dengan teknik vakum. Pada sisi lain, propelan C relatif baik untuk dikembangkan karena memiliki viskositas (17.506 P) dan laju kenaikan viskositasnya (247 P/menit) yang tidak berbeda jauh dengan propelan A, serta indeks pseudoplastisitas (0,972) sesuai untuk pencetakan dengan vakum. Disimpulkan, hubungan antara rasio AP: APk dengan sifat fluida propelan (viskositas, pot life dan pseudoplastisitas beragam oleh karena faktor packing dari partikel – partikel penyusun propelan.

References

Abdillah, L. H., 2015. Penelitian Swelling Prepolimer HTPB-TDI Sebagai Penjajagan Peningkatan Solid Loading Pada Formulasi Propelan. In Teknologi Pesawat Terbang sebagai Mitra Pengembang Teknologi Roket dan Satelit Nasional (359–374). Jakarta: Indonesia Book Project.

Andric, A. M. Ž., 2007. Crystallization of Ammonium-Perchlorate from Solution of Electrolytically Produced Sodium-Perchlorate in a Pilot-Scale Plant. In European Congress of Chemical Engineering-6 (1–11). Copenhagen.

Aziz, A., Mamat, R., Ali, K. W., & Perang, M. R. M., 2015. Review on Typical Ingredients For Ammonium Perchlorate Based Solid Propellant. ARPN Journal of Engineering and Applied Sciences, 10(15), 6188–6191.

Brookfield Engineering Laboratories, 2014. More Solutions for Sticky Problems. Massachusetts: Brookfield Engineering Laboratories, Inc.

Chai, T., Liu, Y. C., Ma, H., Yu, Y. W., Yuan, J. M., Wang, J. H., & Guo, J. H., 2016. Rheokinetic Analysis on the Curing Process of HTPB-DOA- MDI Binder System. In IOP Conference Series: Materials Science and Engineering (Vol. 137, 1–7). IOP Publishing.

Davenas, A., 1991. Composite Propellants. In Solid Rocket Propulsion Technology (439–460). Oxford: Pergamon Press.

Doll, D. W., & Lund, G. K., 1999. Processing and Curing Aid for Composite Propellants. United State.

Dombe, G., Jain, M., Singh, P. P., Radhakrishnan, K. K., & Bhattacharya, B., 2008. Pressure Casting of Composite Propellant. Indian Journal of Chemical Technology, 15, 420–423.

German, R. M., 2016. Particulate Composites Fundamentals and Application. Switzerland: Springer International Publishing.

Gogoi, R., Alam, M. S., & Khandal, R. K., 2014. Effect of Increasing NCO/OH Molar Ratio on The Physicomechanical and Thermal Properties of Isocyanate Terminated Polyurethane Prepolymer. International Journal of Basic and Applied Sciences, 3(2), 118–123.

Hartaya, K., 2016. Analisis Kandungan Aluminium Powder Propelan Berdasar Energi Pembakaran dari Bomb Kalorimeter. Jurnal Teknologi Dirgantara, 14(1), 73–80.

Jain, S., Nandagopal, S., Singh, P. P., Radhakrishnan, K. K., & Bhattacharya, B., 2009. Size and Shape of Ammonium Perchlorate and their Influence on Properties of Composite Propellant. Defence Science Journal, 59(3), 294–299.

K, M. A., Monika, G., & D, P. D., 2010. Empirical Modeling of Chemoviscosity of Hydroxy Terminated Polybutadiene Based Solid Composite Propellant Slurry. Malaysian Polymer Journal, 5(1), 1–16.

Ke-xi, Y., Ze-ming, T., & Guo-juan, W., 1986. Viscosity Prediction. In Propellants, Explosives, Pyrotechnics (Vol. 11, 167–169). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

Mahanta, A. K., Dharmsaktu, I., & Pattnayak, P. K., 2007. Rheological Behaviour of HTPB-Based Composite Propellant: Effect of Temperature and Pot Life on Casting Rate. Defence Science Journal, 57(4), 435–442.

Mahanta, A. K., Goyal, M., & Pathak, D. D., 2010. Rheokinetic Analysis of Hydroxy Terminated Polybutadiene Based Solid Propellant Slurry. E-Journal of Chemistry, 7(1), 171–179.

Manu, S. K., 2009. Glycidyl Azide Polymer (GAP) as a High Energy Polymeric Binder for Composite Solid Propellant Applications. Mahatma Gandhi University.

Muthiah, R., Krishnamurthy, V. N., & Gupta, B. R., 1992. Rheology of HTPB Propellant . 1 . Effect of Solid Loading, Oxidizer Particle Size, and Aluminum Content. Journal of Applied Polymer Science, 44, 2043–2052.

Nair, C. P. R., Devi, C. H., Prasad, V., & Ninan, K. N., 2013. Effect of Process Parameters on the Viscosity of AP / Al / HTPB Based Solid Propellant Slurry, 1, 1–9.

Nair, C. P. R., Prasad, C. D. V., & Ninan, K. N., 2013. Effect of Process Parameters on the Viscosity of AP / Al / HTPB Based Solid Propellant Slurry. Journal of Energy and Chemical Engineering, 1(1), 1–9.

Pinalia, A., 2014. Reduksi Ukuran Partikel Ammonium Perklorat (AP) dengan Metode Spray Drying (Particle Size Reduction of Ammonium Perchlorate Using Spray Drying Method). Majalah Sains Dan Teknologi Dirgantara, 75–80.

Priyanto, 2016. Laporan Penelitian: Pengaruh Perbandingan AP 200 : 50 Terhadap Kualitas Propelan. Tangerang: Universitas Pamulang.

Remakanthan, S., Kk, M., Gunasekaran, R., Thomas, C., & Thomas, C. R., 2015. Analysis of Defects In Solid Rocket Motors Using X-Ray Radiography. The E-Journal of Nondestructive Testing, 20(6).

Sutrisno, 2010. Pengaruh Penambahan Plasticizer DOA terhadap Kinerja Propelan HTPB. In Prosiding SIPTEKGAN XIV (123–127). Tangerang: LAPAN.

Triantafillopoulos, N., 2000. Measurement of Fluid Rheology and Interpretation of Rheograms (2nd ed.). Michigan: Kaltec Scientific.

Tüzün, F. N., 2005. The Effect of Aluminum Content Variation on Burning Rate, Pressure-Propellant Area Ratio Relationship, and Other Properties of Hydroxyl Terminated Polybutadiene Based Composite Propellants. Journal of ASTM International, 2(4), 1–15.

Downloads

Published

07-07-2025

How to Cite

Restasari, A., Suwana Budi, R., & Hartaya, K. (2025). PENGARUH KOMPOSISI AP TERHADAP PROSESIBILITAS SLURRY PROPELAN DENGAN KANDUNGAN ALUMINIUM TINGGI (EFFECTS OF AMMONIUM PERCHLORATE COMPOSITION ON HIGH CONTENT ALUMINIUM PROPELLANT SLURRY). Indonesian Journal of Aerospace, 15(2 Desember), 105–114. https://doi.org/10.30536/j.jtd.2017.v0.a2509

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.