OPTIMIZATION OF METHANE PRODUCTION FROM MIXED SUBSTRATES OF COW FAECES AND CARICA SEEDS USING RESPOND SURFACE METHODOLOGY

Main Article Content

Sutaryo Sutaryo
Setio Susanto
Agung Purnomoadi
Doni Abeng
Rita Purwasih

Abstract

Anaerobic digestion (AD) of dairy cow feces (DCF) has low methane production per ton of waste. A strategy to overcome this drawback is to co-digest DCF and carica seed (CS). Currently, CS is still a waste from the candied carica in the syrup industry and is often just thrown away into the environment. This research aims to evaluate the optimal level of combination for methane production from DCF with co-substrates of germinated (CGM) and non-germinated (CNG) CS meal using Respond Surface Methodology (RSM). This research uses a completely randomized design with a factorial pattern consisting of the first factor being CGM and CNG, and the second factor being the combined level of DCF and CS (CGM or CNG. The result showed that utilization of CS can increase significantly (p<0.05) methane production of the final substrate compared to the control (digester treating DCF only). Utilization of CGM as co-substrate with DCF can also increase methane production (p<0.05) compared to CNG. All parameters in the liquid phase were in the normal range for AD. Based on the research results, the optimum point with a desirability value close to 1 was achieved at a ratio of CGM10 and DCF90. CS was proven can be used as a co-substrate with DCF to increase methane production of the final substrate and germination can be used as a method to increase the methane yield of CS. 

Article Details

How to Cite
Sutaryo, S., Susanto, S., Purnomoadi, A., Abeng, D., & Purwasih, R. (2024). OPTIMIZATION OF METHANE PRODUCTION FROM MIXED SUBSTRATES OF COW FAECES AND CARICA SEEDS USING RESPOND SURFACE METHODOLOGY . Jurnal Bioteknologi Dan Biosains Indonesia, 11(1), 61–73. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/5554
Section
Articles

References

Abdelsalam E, Samer M, Abdel-Hadi MA, Hassan HE, Badr Y (2015) Effect of CoCl2, NiCl2 and FeCl3 on biogas and methane production. Misr J. Agric. Eng 32:843-862. doi:10.21608/mjae.2015.98656

Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Conv. Man 141:108-119. doi:10.1016/j.enconman.2016.05.051

Akyol C, Ozbayram EG, Ince O, Klein-steuber S, Ince B (2016) Anaerobic co-digestion of cow manure and bar-ley: effect of cow manure to barley ra-tio on methane production and diges-tion stability. Environ. Prog. Sustain. Energy 35:589–595. https:doi.org/10.1002/ep.12250

Alavi-Borazjani SA, Capela I, Tarelho LAC (2020) Over-acidification control strat-egies for enhanced biogas production from anaerobic digestion: a review. Biomass Bioenerg 143:105833. doi:10.1016/j.biombioe.2020.105833

Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure-Influence of biomass

composition on the methane yield. Agric. Ecosyst. Environ 118:173-182. doi:10.1016/j.agee.2006.05.007

Arifan F, Broto RTDW, Sumardiono S, Sutaryo, Dewi AL, Yudanto, YA, Sapatra, EF (2022) Effect of thermal pretreatment of pineapple peel waste in biogas production using response surface methodology. Int. J. Technol 13:619-632. doi:10.14716/ijtech.v13i3.4747

Arija F, Purwanto P, Hadiyanto H (2022) The opportunities of cleaner produc-tion in carica (Carica pubescens) in-dustry to reduce hazardous waste. J. Bioresour. Environ. Sci 1:20-26. doi:10.14710/jbes.2022.14235

Babaee A, Shayegan J, Roshani A (2013) Anaerobic slurry co-digestion of poul-try manure and straw: effect of organic loading and temperature. J. Environ. Health Sci. Eng 11:15. doi:10.1186/2052-336X-11-15

Badan Pusat Statistik (BPS) (2022) Keca-matan Kejajar dalam angka 2022. Ba-dan Pusat Statistik, Jakarta

Beltrán-Orozco M del C, Martínez-Olguín A, Robles-Ramírez M del C (2020) Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germina-tion process. Food Sci. Biotechnol 29:751-757. doi:10.1007/s10068-019-00726-1

Boone DR, Garrity G, Castenholz RW (2011) Bergey’s manual of systematic bacteriology: volume one: the archaea and the deeply branching and photo-trophic bacteria. Springer, New York

Chew KR, Leong HY, Khoo KS, Vo DVN, Anjum H, Chang CK, Show PL (2021) Effects of anaerobic digestion of food waste on biogas production and envi-ronmental impacts: a review. Environ. Chem. Lett 19:2921-2939. doi:10.1007/s10311-021-01220-z

Christou ML, Vasileiadis S, Kalamaras SD, Karpouzas DG, Angelidaki I, Kotsopoulos TA (2021) Ammonia-induced inhibition of manure-based continuous biomethanation process under different organic loading rates and associated microbial community

dynamics. Bioresour. Technol 320. doi:10.1016/j.biortech.2020.124323

Czatzkowska M, Harnisz M, Korzeniewska E, Koniuszewska I (2020) Inhibitors of the methane fermentation process with particular emphasis on the mi-crobiological aspect: A review. Energy Sci Eng 8:1880-1897. doi:10.1002/ese3.609

Díaz-Batalla L, Aguilar-Arteaga K, Castro-Rosas J, Nallely Falfán-Cortés R, Na-varro-Cortez RO, Gómez-Aldapa CA (2023) Common bean (Phaseolus vulgaris L.) seed germination im-proves the essential amino acid pro-file, flavonoid content and expansion index. Czech J. Food Sci 41:73–77. doi:10.17221/5/2022-CJFS

Fouad AA, Rehab FMA (2015) Effect of germination time on proximate analy-sis, bioactive compounds and antioxi-dant activity of lentil (Lens culinaris Medik.) sprouts. Acta Sci. Pol. Tech-nol 14:233-246. doi:10.17306/J.AFS.2015.3.25

Ganzoury MA, Allam NK (2015) Impact of nanotechnology on biogas production: A mini-review. Renew. Sustain. Ener-gy Reviews 50:1392-1404. doi:10.1016/j.rser.2015.05.073

Harirchi S, Wainaina S, Sar T, Nojoumi SA, Parchami M, Parchami M, Varjani S, Khanal SK, Wong J, Awasthi MK, Taherzadeh, MJ (2022) Microbiologi-cal insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengi-neered 13:6521-6557. doi:10.1080/21655979.2022.2035986

Hasanudin U, Safira ND, Nurainy F, Utomo TP, Haryanto A (2023) Improving bio-gas production in tapioca industry by using onggok as co-substrate. Int. J. Renew Energy Res 13:741-749. doi:10.20508/ijrer.v13i2.13814.g8748

Hütter M, Sailer G, Hülsemann B, Müller J, Poetsch J (2023) Impact of Thermo-Mechanical Pretreatment of Sargas-sum muticum on Anaerobic Co-

Digestion with Wheat Straw. Fermen-tation. doi.org/10.3390/fermentation9090820

Jin W, Xu X, Yang F, Li C, Zhou M (2018) Performance enhancement by rumen cultures in anaerobic co-digestion of corn straw with pig manure. Biomass Bioenerg 115:120-129. doi:10.1016/j.biombioe.2018.05.001

Keskin T, Arslan K, Karaalp D, Azbar N (2019) The Determination of the trace element effects on basal medium by using the statistical optimization ap-proach for biogas production from chicken manure. Waste Biomass Val-ori 10:2497-2506. doi:10.1007/s12649-018-0273-2

Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic di-gestion of solid organic waste. Waste Manag 31:1737-1744. doi:10.1016/j.wasman.2011.03.021

Lahbab A, Djaafri M, Kalloum S, Benatiallah A, Atelge MR, Atabani AE (2021) Co-digestion of vegetable peel with cow dung without external inoculum for bi-ogas production: Experimental and a new modelling test in a batch mode. Fuel 306. doi:10.1016/j.fuel.2021.121627

Laxmi G, Chaturvedi N, Richa S (2015) The impact of malting on nutritional com-position of foxtail millet, wheat and chickpea. J. Nutrition Food Sci 05. doi:10.4172/2155-9600.1000407

Li H, Guo XL, Cao FF, Wang Y (2014) Pro-cess evolution of dry anaerobic Co-digestion of cattle manure with kitchen waste. Chem. Biochem. Eng. Q 28:161-166. https://www.researchgate.net/publication/279903174

Lien DTP, Tram PTB, Toan HT (2017) Ef-fect of germination on antioxidant ca-pacity and nutritional quality of soy-bean seeds (Glycinemax (L.) Merr.). Can Tho University J. Sci 06:93-101. doi:10.22144/ctu.jen.2017.032

Ma J, Bashir MA, Pan J, Qiu L, Liu H, Zhai L, Rehim A (2018) Enhancing perfor-mance and stability of anaerobic di-gestion of chicken manure using thermally modified bentonite. J. Cleaner Prod 183:11-19. doi:10.1016/j.jclepro.2018.02.121

Medugu CI, Saleh B, Igwebuike JU, Ndirm-bita RL (2012) Strategies to Improve the Utilization of Tannin-Rich Feed Materials by Poultry. Int. J. Poultry Sci 11:417-423. doi:10.3923/ijps.2012.417.423

Møller HB, Moset V, Brask M, Weisbjerg MR, Lund P (2014) Feces composi-tion and manure derived methane yield from dairy cows: Influence of diet with focus on fat supplement and roughage type. Atmos. Environ 94:36-43. doi:10.1016/j.atmosenv.2014.05.009

Mustikasari AR, Sutaryo S, Ufidiyati N, Purnomoadi A (2023) The Effect of Using Acidified Imperata cylindrica as a Co-substrate with Dairy Cow Ma-nure on the Digesters Performance. Trop Anim Sci J 46:361–366. doi:10.5398/tasj.2023.46.3.361

Myers RH, Montgomery DC (2002) Re-sponse Surface Methodology: Product and Process Optimization Using De-signed Experiments, 2nd Edition, John Wiley & Sons, New York

Nkhata SG, Ayua E, Kamau EH, Shingiro JB (2018) Fermentation and germina-tion improve nutritional value of cere-als and legumes through activation of endogenous enzymes. Food Sci. Nutr 6(8):2446-2458. doi:10.1002/fsn3.846

Permana IDGM, Idrati R, Hastuti P, Supar-mo (2013) Indogenous lipase activi-ties during cocoa bean (Theobroma cacao L.) germination. Agritech 33(2): 176-181.

Purwanti A, Setyo Arbintarso E, Setyowati Rahayu S, Rahayu Gusmarwani S, Puri Dwi Pangestu M, Prayogo W (2022) Optimization of biogas produc-tion from tofu wastewater. J. Environ. Eng. Sustain. Technol 9:24-29. doi:10.21776/ub.jeest.2022.009.01.4

Purwasih R, Sutaryo S, Purbowati E, Purnomoadi A (2024) Evaluation of germination as pretreatment method to increase methane production: A case study in papaya seed. Case Stud Chem Environ Eng 10. doi:10.1016/j.cscee.2024.100788

Safari M, Abdi R, Adl M, Kafashan J (2018) Optimization of biogas productivity in lab-scale by response surface meth-odology. Renew Energ. 118:368-375. doi:10.1016/j.renene.2017.11.025

Sekoai PT, Ghimire A, Ezeokoli OT, Rao S, Ngan WY, Habimana O, Yao Y, Yang P, Fung HY, Yoro KO, Daramola MO, Hung CH (2021) Valorization of vola-tile fatty acids from the dark fermenta-tion waste Streams-A promising pathway for a biorefinery concept. Renew. Sustain. Energy Rev 143. doi:10.1016/j.rser.2021.110971

Solli L, Bergersen O, Sørheim R, Briseid T (2014) Effects of a gradually in-creased load of fish waste silage in co-digestion with cow manure on me-thane production. Waste Manag 34(8):1553-1559. doi:10.1016/j.wasman.2014.04.011

Suanon F, Sun Q, Mama D, Li J, Dimon B, Yu CP (2016) Effect of nanoscale ze-ro-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge. Water Res 88:897-903. doi:10.1016/j.watres.2015.11.014

Sugiharto S (2021) The use of sprouted grains as dietary feed ingredients for broilers-a brief overview. Livestock Res. Rural Dev 33:38.

Sugiharto S, Agusetyaningsih I, Widiastuti E, Wahyuni HI, Yudiarti T, Sartono TA (2022) Germinated papaya seed alone or in combination with chitosan on growth, health and meat quality of broilers during grower period. Vet. Anim. Sci 18:1-7. doi:10.1016/j.vas.2022.100273

Sutaryo S, Ward AJ, Møller HB (2012) Thermophilic anaerobic co-digestion of separated solids from acidified dairy cow manure. Bioresour. Technol 114:195-200. doi:10.1016/j.biortech.2012.03.041

Sutaryo S, Ward AJ, Møller HB (2014) The effect of low-temperature thermal pre-treatment on methane yield of pig ma-nure fractions. Animal Prod. 16:55-62.

Sutaryo S, Sempana AN, Lestari CMS, Ward AJ (2020) Performance compar-ison of single and two-phase biogas digesters treating dairy cattle manure at tropical ambient temperature. Trop. Anim. Sci. J 43:354-359. doi:10.5398/tasj.2020.43.4.354

Sutaryo S, Sempana AN, Mulya RM, Sulis-tyaningrum D, Ali MS, Damarjati RI, Purbowati E, Adiwinarti R, Purnomoadi A (2022a) Methane Pro-duction of pistia stratiotes as a single substrate and as a co-substrate with dairy cow manure. Fermentation 8:1-9. doi:10.3390/fermentation8120736

Sutaryo S, Sempana AN, Prayoga I, Chani-aji FG, Dwitama SD, Sugandi NF, Purnomoadi A, Ward AJ (2022b) In-creased methane yield from dairy cow manure by co-substrate with Salvinia molesta. Asia Pac. J. Sci. Technol 32:2147-2160. doi:10.14456/apst.2023.39

Sutaryo S, Huda S, Toba GA, Izza AS, Ri-anto E (2023) Anaerobic co-digestion of tempe wastewater and dairy cow dung. Livestock Res. Rural Dev 35:1-5.

Triolo JM, Ward AJ, Pedersen L, Sommer SG (2013) Characteristics of animal slurry as a key biomass for biogas production in Denmark. In: Biomass Now - Sustainable Growth and Use. InTech. doi:10.5772/54424

Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neu-tral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583-3597. doi:10.3168/jds.S0022-0302(91)78551-2

Wandera SM, Qiao W, Algapani DE, Bi S, Yin D, Qi X, Liu Y, Dach J, Dong R (2018) Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renew. Energy 116:720-727. doi:10.1016/j.renene.2017.09.087

Winarti W, Yudiarti T, Widiastuti E, Wahyuni HI, Sartono TA, Sugiharto S (2024) Nutritional value and antioxidant activ-ity of sprouts from seeds of Carica papaya – their benefits for broiler nu-trition. Bulg J Agric Sci 30:107–114

Yılmaz Ş, Şahan T (2020) Utilization of pumice for improving biogas produc-tion from poultry manure by anaerobic digestion: A modeling and process op-timization study using response sur-face methodology. Biomass Bioenerg 138. doi:10.1016/j.biombioe.2020.105601