KARAKTERISASI DAN POTENSI KATALIS KARBON AKTIF TERSULFONASI LIMBAH KAYU PADA REAKSI HIDROLISIS SEKAM PADI MENGGUNAKAN MICROWAVE

Main Article Content

Lisna Efiyanti
Sutanto
Dian Anggraini Indrawan
Gustan Pari

Abstract

Lignocellulose biomass is a raw material for developing various promising products, such as wood waste, which can
be used as raw material for the production of activated carbon as a catalyst. This research aims to characterize activated
carbon for hydrolisis catalyst. In this study, the process of making activated carbon from mixed camphor and meranti
wood was made through pyrolysis process at temperature of 500°C, followed by sulfonation using H2
SO4
10N on
reflux. The sulfonated activated carbon product (KA-SO3
H) was then characterized according to Indonesia National
Standard (SNI) including recovery value, moisture content, ash content, fly ash, fixed carbon, iodine absorption, while
acidity and functional groups were measured using amonia adsorption and FTIR analysis, respectively. Furthermore,
the sulfonated activated carbon was tested for its application in the hydrolysis reaction of rice husks using microwave
with vary rice husk weight namely 2, 4 ,6 ,8, and 10 g at 400 and 600 W for 5, 7, and 9 minutes, respectively. The
f
iltrate was then analyzed for its glucose levels using the DNS method (Dinitrosalycilic acid). The optimum condition of
the hydrolysis reaction using sulfonated activated carbon catalyst were 400 W power, 1:8 ratio of rice husk and catalyst
in 9 minutes duration. The optimum condition produced 330.51 ppm glucose levels with glucose yield percentages was
61.97%, and required energy was 216 kJ.

Article Details

How to Cite
Lisna Efiyanti, Sutanto, Dian Anggraini Indrawan, & Gustan Pari. (2025). KARAKTERISASI DAN POTENSI KATALIS KARBON AKTIF TERSULFONASI LIMBAH KAYU PADA REAKSI HIDROLISIS SEKAM PADI MENGGUNAKAN MICROWAVE . Jurnal Penelitian Hasil Hutan, 37(2), 67–80. https://doi.org/10.20886/jphh.2019.37.2.67-80
Section
Articles

References

Amelia, R., Pandapotan, H., & Purwanto. (2013). Pembuatan dan karakterisasi katalis karbon aktif tersulfonasi sebagai katalis ramah lingkungan pada proses hidrolisis biomassa. Jurnal Teknologi Kimia Dan Industri, 2(4), 146–156.

Anggoro, D. D., Rispiandi, & Purwanto. (2015). Hydrolysis of Eichhornia crassipes to glucose over sulfonated active carbon catalyst. Malaysian Journal of Fundamental and Applied Sciences, 11(2), 67–69.

Anggraeni, P., Addarojah, Z., & Anggoro, D. D. (2013). Hidrolisis selulosa eceng gondok (Eichhornia crassipe) menjadi glukosa dengan katalis arang aktif tersulfonasi. Jurnal Teknologi Kimia Dan Industri, 2(3), 63–69.

Badan Pusat Statistik. (2017). Statistik Produksi Kehutanan 2016. Jakarta: Badan Pusat Statistik.

Chang, R. (2006). Kimia Dasar: Konsep-konsep Inti. (L. Simarmata, Ed.). Jakarta: Erlangga.

Chen, G., Wang, X., Jiang, Y., Mu, X., & Liu, H. (2018). Insights into deactivation mechanism of sulfonated carbonaceous solid acids probed by cellulose hydrolisis. Catalysis Today. http://doi.org/10.1016/j.cattod.2018.03.069

Chen, W., Tu, Y., & Sheen, H. (2011). Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88, 2726–2734. http://doi.org/10.1016/j.apenergy.2011.02.027

Chen, Z., Dou, X., Zhang, Y., Yang, M., & Wei, D. (2019). Rapid thermal-acid hydrolisis of spiramycin by silicotungstic acid under microwave irradiation. Environmental Pollution. http://doi.org/10.1016/j.envpol.2019.02.074

Cheng, J., Wang, N., Zhao, D., Qin, D., Si, W., Tan, Y., & Wang, D. (2016). The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions. Bioresource Technology, 220, 457–463. http://doi.org/10.1016/j.biortech.2016.08.064

Fraga, A. do C., Quitete, C. P. B., Loureiro, V. L., Sousa-Aguiar, E. F., Fonseca, I. M., & Rego, A. M. B. (2015). Biomass derived solid acids as effective hydrolysis catalysts. Journal of Molecular Catalysis A: Chemical, 1–10.

Fujimoto, S., Inoue, S., & Yoshida, M. (2018). High solid concentrations during the hydrothermal pretreatment of eucalyptus accelerate hemicellulose decomposition and subsequent enzymatic glucose production. Bioresource Technology Reports, 4, 16–20. http://doi.org/10.1016/j.biteb.2018.09.006

Goswami, M., Meena, S., Navatha, S., Rani, K. N. P., Pandey, A., Sukumaran, R. K., … Devi, B. L. A. P. (2015). Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol. Bioresource Technology, 1–4. http://doi.org/10.1016/j.biortech.2015.03.012

Guo, F., Fang, Z., Xu, C. C., & Jr., R. L. S. (2012). Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 38, 672–690. http://doi.org/10.1016/j.pecs.2012.04.001

Hu, L., Lin, L., Wu, Z., Zhou, S., & Liu, S. (2015). Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. “Applied Catalysis B: Environmental,” 174, 225–243. http://doi.org/10.1016/j.apcatb.2015.03.003

Intaramas, K., Jonglertjunya, W., Laosiripojana, N., & Sakdaronnarong, C. (2018). Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis. Energy, 149, 837–847. http://doi.org/10.1016/j.energy.2018.02.073

Jäger, G., & Büchs, J. (2012). Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol, 7, 1–15. http://doi.org/10.1002/biot.201200033

Jeong, H., Park, Y.-C., Seong, Y.-J., & Lee, S. M. (2017). Sugar and ethanol production from woody biomass via supercritical water hydrolisis in a continuous pilot-scale system using acid catayst. Bioresource Technology. http://doi.org/10.1016/j.biortech.2017.08.058

Kang, S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic acid : A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340–362. http://doi.org/10.1016/j.rser.2018.06.016

Kostas, E. T., Beneroso, D., & Robinson, J. P. (2017). The Application of Microwave Heating in Bioenergy : A Review on the Microwave Pre- treatment and Upgrading Technologies for Biomass. Renewable and Sustainable Energy Reviews, 77, 12–27.

Latupeirissa, J., Tanasale, M. F. J. D. P., & Musa, S. H. (2018). Kinetika adsorpsi zat warna metilen biru oleh karbon aktif dari kulit kemiri (Aleurites moluccana ( L ) Willd). Indo.J.Chem.Res, 6(1), 12–21.

Li, Q., He, Y., Xian, M., Jun, G., Xu, X., Yang, J., & Li, L. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 100, 3570–3575. http://doi.org/10.1016/j.biortech.2009.02.040

Li, S., Gu, Z., Bjornson, B. E., & Muthukumarappan, A. (2013). Biochar based solid acid catalyst hydrolyze biomass. Journal of Environmental Chemical Engineering, 1, 1174–1181. http://doi.org/10.1016/j.jece.2013.09.004

Lin, Q., Zhang, C., Wang, X., Cheng, B., Mai, N., & Ren, J. (2018). Impact of Activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catalysis Today. http://doi.org/10.1016/j.cattod.2018.03.070

Liu, B., Ba, C., Jin, M., & Zhang, Z. (2015). Effective conversion of carbohydrates into biofuel precursor 5-hydroxymethylfurfural ( HMF ) over Cr-incorporated mesoporous zirconium phosphate. Industrial Crops & Products, 76, 781–786. http://doi.org/10.1016/j.indcrop.2015.07.036

Liu, Y., Xiao, W., Xia, S., & Ma, P. (2013). SO3H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose. Carbohydrate Polymers, 92, 218–222. http://doi.org/10.1016/j.carbpol.2012.08.095

Miller, G. L. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. http://doi.org/10.1021/ac60147a030

Nata, I. F., Irawan, C., Mardina, P., & Lee, C. (2015). Carbon-based strong solid acid for cornstarch hydrolisis. Journal of Solid State Chemistry. http://doi.org/10.1016/j.jssc.2015.07.005

Onda, A., Ochi, T., & Yanagisawa, K. (2008). Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 10, 1033–1037. http://doi.org/10.1039/b808471h

Pari, G., Sofyan, K., Syafii, W., Buchari, & Yamamoto, H. (2006). Kajian struktur arang dan lignin. Jurnal Penelitian Hasil Hutan, 24(1), 9–20.

Qi, X., Lian, Y., Yan, L., & Jr., R. L. S. (2014). One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catalysis Communications, 57, 50–54. http://doi.org/10.1016/j.catcom.2014.07.035

Qu, H., Zhou, Y., Ma, Y., Zhao, P., Gao, B., Guo, M., & Feng, C. (2018). A green catalyst for hydrolysis of cellulose : Amino acid protic ionic Liquid. Journal of the Taiwan Institute of Chemical Engineers, 1–7. http://doi.org/10.1016/j.jtice.2018.09.024

Rinaldi, R., Meine, N., Stein, J. vom, Palkovits, R., & Schüth, F. (2010). Which Controls the Depolymerization of Cellulose in Ionic Liquids : The Solid Acid Catalyst or Cellulose ? Chem Sus Chem, 3, 266–276. http://doi.org/10.1002/cssc.200900281

Setyawan, M. N., Wardani, S., & Kusumastuti, E. (2018). Arang kulit kacang tanah teraktivasi H3PO4 sebagai adsorben ion logam Cu (II) dan diimobilisasi dalam bata beton. Indonesian Journal of Chemical Science, 7(3), 262–269.

Shrotri, A., Kobayashi, H., & Fukuoka, A. (2016). Air Oxidation of Activated Carbon to Synthesize a Biomimetic Catalyst for Hydrolysis of Cellulose. ChemSusChem, 9, 1299–1303. http://doi.org/10.1002/cssc.201600279

Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2008). Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc, 130(38), 12787–12793. http://doi.org/10.1021/ja803983h

Thangavelu, S. K., Rajkumar, T., Pandi, D. K., & Ahmed, A. S. (2019). Microwave assisted acid hydrolysis for bioethanol fuel production from sago pith waste. Waste Management, 86, 80–86.

Trisunaryanti, W. (2007). Material katalis. Yogyakarta: Jurusan Kimia MIPA UGM.

Tsubaki, S., Oono, K., Ueda, T., Onda, A., Yanagisawa, K., Mitani, T., & Azuma, J. (2013). Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters. Bioresources Technology, 144, 67–73.

Utomo, M. P., & Laksono, E. W. (2007). Tinjauan umum tentang deaktivasi katalis pada reaksi katalis heterogen. In Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA (pp. 110–115). Yogyakarta: Universitas Negeri Yogyakarta.

Weiqi, W., & Shubin, W. (2018). Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr / HZSM-5 catalyst. Fuel, 225, 311–321. http://doi.org/10.1016/j.fuel.2018.03.120

Wibowo, S., Syafii, W., & Pari, G. (2011). Karakterisasi Permukaan Arang Aktif Tempurung Biji Nyamplung. Makara Teknologi, 15(1), 17–24.

Wu, M. N., Joiner, W. J., Dean, T., Yue, Z., Smith, C. J., Chen, D., … Koh, K. (2010). SLEEPLESS , a Ly-6 / neurotoxin family member , regulates the levels , localization and activity of Shaker. Nature Neuroscience, 13(1), 69–75. http://doi.org/10.1038/nn.2454

Wu, Y., Fu, Z., Yin, D., Xu, Q., Liu, F., Lu, C., & Mao, L. (2010). Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chemistry, 696–700. http://doi.org/10.1039/b917807d

Xu, J., Chen, H., Kadar, Z., Thomsen, A. B., Schmidt, J. E., & Peng, H. (2011). Optimization of microwave pretreatment on wheat straw for ethanol production. Biomass and Bioenergy, 35, 3859–3864. http://doi.org/10.1016/j.biombioe.2011.04.054

Yabushita, M., Techikawara, K., Kobayashi, H., Fukuoka, A., & Katz, A. (2016). Zeolite-Templated Carbon Catalysts for Adsorption and Hydrolysis of Cellulose-Derived Long-Chain Glucans : Effect of Post-Synthetic Surface Functionalization. ACS Sustainable Chemistry & Engineering, 1–38. http://doi.org/10.1021/acssuschemeng.6b01796

Yu, F., Zhong, R., Chong, H., Smet, M., Dehaen, W., & Sels, B. F. (2016). Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chemistry. http://doi.org/10.1039/c6gc02130a

Zhang, Z., & Zhao, Z. K. (2009). Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydrate Research, 344, 2069–2072. http://doi.org/10.1016/j.carres.2009.07.011

Zhong, C., Wang, C., Huang, F., Wang, F., Jia, H., Zhou, H., & Wei, P. (2015). Selective hydrolysis of hemicellulose from wheat straw by a nanoscale solid acid catalyst. Carbohydrate Polymers, 131, 384–391. http://doi.org/10.1016/j.carbpol.2015.05.070

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.