MENGIDEALISASIKAN PENAMPANG LINTANG BULUH BAMBU MENJADI BENTUK GEOMETRI CONIC UNTUK MENGHITUNG SIFAT PENAMPANGNYA

Main Article Content

Effendi Tri Bahtiar
Asep Denih
Lina Karlinasari
Gustian Rama Putra
Naresworo Nugroho
Sulistyono

Abstract

A designer needs to simplify the bamboo cross-section shape variation to the closest standard geometry so a structural analysis
of bamboo construction can be carried out. Bamboo culm’s cross-sectional geometrics vary and may be similar to conic such as a
circle, ellipse, or egg-shape ring. The best-fit conic section, which is the most similar to the actual geometric shape of the bamboo
culm’s cross-section, should be considered. This study formulates mathematical equations for calculating the bamboo culm’s crosssectional properties (including the area, the first moment of area, the centroid, and the moment of inertia), which are fitted by a
circle, ellipse, and egg-shaped ring. The thickness, diameter, major axis, and minor axis of four bamboo species (i.e., Gigantochloa
apus, Bambusa vulgaris, Gigantochloa pseudoarundinacea, and Gigantochloa robusta) were measured, and those
values were substituted into the equations to produce the range of cross-sectional properties of each species.

Article Details

How to Cite
Effendi Tri Bahtiar, Asep Denih, Lina Karlinasari, Gustian Rama Putra, Naresworo Nugroho, & Sulistyono. (2025). MENGIDEALISASIKAN PENAMPANG LINTANG BULUH BAMBU MENJADI BENTUK GEOMETRI CONIC UNTUK MENGHITUNG SIFAT PENAMPANGNYA. Jurnal Penelitian Hasil Hutan, 40(3), 165–188. https://doi.org/10.20886/jphh.2022.40.3.165-188
Section
Articles

References

[ASTM] American Society for Testing and Materials. (2017). ASTM D2915 Standard Practice for Sampling and Data-Analysis for Structural Wood and Wood-Based Products. American Society for Testing and Materials. https://doi.org/10.1520/D2915-17.2

Andre, J.-P. (1998). A study of the vascular organization of bamboos (Poaceae-Bambuseae) using a Microcasting method. IAWA Journal, 19(3), 265–278.

Bahtiar, E. T., Imanullah, A. P., Hermawan, D., Nugroho, N., & Abdurachman. (2019). Structural grading of three sympodial bamboo culms (Hitam, Andong, and Tali) subjected to axial compressive load. Engineering Structures, 181, 233–245. https://doi.org/10.1016/j.engstruct.2018.12.026

Bahtiar, E. T., Malkowska, D., Trujillo, D., & Nugroho, N. (2021). Experimental study on buckling resistance of Guadua angustifolia bamboo column. Engineering Structures, 228, 111548. https://doi.org/10.1016/j.engstruct.2020.111548

Bahtiar, E. T., Nugroho, N., Surjokusumo, S., & Karlinasari, L. (2013). Eccentricity Effect on Bamboo’s Flexural Properties. Journal of Biological Sciences, 13(2), 82–87. https://doi.org/10.3923/jbs.2013.82.87

Bahtiar, E. T., Trujillo, D., & Nugroho, N. (2020). Compression resistance of short members as the basis for structural grading of Guadua angustifolia. Construction and Building Materials, 249, 118759. https://doi.org/10.1016/j.conbuildmat.2020.118759

Chuma, S., Hirohashi, M., Ohgama, T., & Kasahara, Y. (1990). Composite structure and tensile properties of Mousou bamboo. Journal of the Society of Materials Science, Japan, 39(442), 847–851. https://doi.org/10.2472/jsms.39.847

Firmanti, A., Bachtiar, E. T., Surjokusumo, S., Komatsu, K., & Kawai, S. (2005). Mechanical stress grading of tropical timbers without regard to species. Journal of Wood Science, 51(4). https://doi.org/10.1007/s10086-004-0661-z

Gere, J. M., & Timoshenko, S. P. (1991). Mechanics of Materials (4th ed.). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-3124-5

Inoue, A., Sakamoto, S., Suga, H., & Kitahara, F. (2011). Estimation of culm volume for bamboo, Phyllostachys bambusoides, by two-way volume equation. Biomass and Bioenergy, 35(7), 2666–2673. https://doi.org/10.1016/j.biombioe.2011.03.003

International Organization for Standardization. ISO 19624:2018: Bamboo structures — Grading of bamboo culms — Basic principles and procedures (2018). Retrieved from https://www.iso.org/standard/65528.html

Janssen, J. (1991). Mechanical Properties of Bamboo. Dordecht, The Netherlands: Kluwer Academic Publishers.

Javadian, A., Smith, I. F. C., Saeidi, N., & Hebel, D. E. (2019). Mechanical properties of bamboo through measurement of culm physical properties for composite fabrication of structural concrete reinforcement. Frontiers in Materials, 6(February), 1–18. https://doi.org/10.3389/fmats.2019.00015

Liese, W. (1985). Anatomy and Properties of Bamboo. Proceedings of the International Bamboo Workshop, 196–208.

Liese, Walter. (2002). The Anatomy of Bamboo Culms. Retrieved from https://brill.com/view/title/7815

Liese, Walter, & Tang, T. K. H. (2015). Properties of the Bamboo Culm. In Bamboo, Tropical Forestry 10 (pp. 227–256). https://doi.org/10.1007/978-3-319-14133-6_8

Liu, P., Zhou, Q., Fu, F., & Li, W. (2022). Bending Strength Design Method of Phyllostachys edulis Bamboo Based on Classification. Polymers, 14(7), 1418. https://doi.org/10.3390/polym14071418

Mohmod, A. L., Amin, A. H., Kasim, J., & Jusuh, M. Z. (1992). Effects of anatomical characteristics on the physical and mechanical properties of Bambusa blumeana. Journal of Tropical Forest Science, 6(2), 159–170.

Mohmod, A. L., Ariffin, W. T. W., & Ahmad, F. (1990). Anatomical features and mechanical properties of three Malaysian Bamboos. Journal of Tropical Forest Science, 2(3), 227–234.

Nugroho, N, Kartini, & Bahtiar, E. T. (2021). Cross-species bamboo grading based on flexural properties. IOP Conference Series: Earth and Environmental Science, 891(1), 012008. https://doi.org/10.1088/1755-1315/891/1/012008

Nugroho, Naresworo, & Bahtiar, E. T. (2021). Buckling formulas for designing a column with Gigantochloa apus. Case Studies in Construction Materials, 14, e00516. https://doi.org/10.1016/j.cscm.2021.e00516

Nugroho, Naresworo, Bahtiar, E. T., & Nurmadina. (2018). Grading Development of Indonesian Bamboo Culm: Case Study on Tali Bamboo (Gigantochloa apus). In 2018 World Conference on Timber Engineering (pp. 1–6). Seoul.

Nurmadina, Nugroho, N., & Bahtiar, E. T. (2017). Structural grading of Gigantochloa apus bamboo based on its flexural properties. Construction and Building Materials, 157, 1173–1189. https://doi.org/10.1016/j.conbuildmat.2017.09.170

Sá, R. A., Sá, M. G., & Miranda, I. P. A. (2017). Bending strength and nondestructive evaluation of structural bamboo. Construction and Building Materials, 146, 38–42. https://doi.org/10.1016/j.conbuildmat.2017.04.074

Sánchez Vivas, L., Costello, K., Mobley, S., Mihelcic, J. R., & Mullins, G. (2022). Determination of safety factors for structural bamboo design applications. Architectural Engineering and Design Management, 18(1), 26–37. https://doi.org/10.1080/17452007.2020.1781589

Schulgasser, K., & Witztum, A. (1992). On the strength, stiffness and stability of tubular plant stems and leaves. Journal of Theoretical Biology, 155(4), 497–515. https://doi.org/10.1016/S0022-5193(05)80632-0

Sharma, B., Harries, K. A., & Ghavami, K. (2013). Methods of determining transverse mechanical properties of full-culm bamboo. Construction and Building Materials, 38, 627–637. https://doi.org/10.1016/j.conbuildmat.2012.07.116

Shukla, S. R., & Sharma, S. K. (2017). Evaluation of Dynamic Elastic Properties of Bambusa Bambos at Three Different Stages of Its Life Cycle by Elastosonic Technique. Journal of Tropical Forest Science, 29(4), 448–456. Retrieved from http://www.jstor.org/stable/44371424

Trujillo, D., & Jangra, S. (2016). Grading of Bamboo (INBAR Working Paper No. 79, 1st ed.). Beijing: International Network for Bamboo and Rattan.

Wegst, U. G. K. (2011). Bending efficiency through property gradients in bamboo, palm, and wood-based composites. Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 744–755. https://doi.org/10.1016/j.jmbbm.2011.02.013

Similar Articles

<< < 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.