POTENSI SIMPANAN KARBON DAN EMISI CO2 AKIBAT PENEBANGAN DI HUTAN ALAM PAPUA

Main Article Content

Yuniawati
Dulsalam
Sarah Andini

Abstract

Forests as a place for carbon sequestration will be a source of emissions if there are no more photosynthetic plants to store carbon
dioxide (CO2) gas. CO2 gases that spreads in atmosphere can affect global climate change. Uncontrolled timber harvesting in
natural forests has a negative impact on the potential for carbon absorption and CO2 emissions. This study aimed to analyze the
potential for carbon storage and emission due to felling in natural forests. The research method was carried out destructively and
non-destructively using data on potential stands before felling and the potential for trees to be felled on three logging compartments
by making nine sample observation plots (PCP) in three selected felling plots within the natural forest concession area, namely plots
numbered CC 47, K47, and L 47. Each PCP was a rectangular plot measuring 2 ha (200 x 100 m2
). The results showed that
the natural forest stand structure in the study location formed an inverted J letter, where the stands with a diameter class of 60 cm
and above had a lower stand volume than other diameter classes. Carbon storage in the stand before felling was 21.07 ton C/ha.
The potential for carbon storage decreased when 144 trees were felled, resulting the reduction was 18.49 ton C/ha, causing a
potential carbon emission of 67.86 tons CO2-eq. After felling, the potential for carbon storage was decreased or remained by 2.57
ton C/ha so that the potential for emission in the post-felling area was 9.43 tons CO2-eq.

Article Details

How to Cite
Yuniawati, Dulsalam, & Sarah Andini. (2025). POTENSI SIMPANAN KARBON DAN EMISI CO2 AKIBAT PENEBANGAN DI HUTAN ALAM PAPUA. Jurnal Penelitian Hasil Hutan, 40(2), 61–73. https://doi.org/10.20886/jphh.2022.40.2.61%E2%80%9373
Section
Articles

References

Alvarez, S., Ortiz, C., Díaz-Pinés, E., & Rubio, A. (2016). Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2 Fix model. Mitig. Adapt. Strategy. Global Change, 21, 1045–1058. doi: 10.1007/s11027-014-9565-4.

Azian, M., Nizam, M. S., Samsudin, M., Ismail, P., Nur-Hajar, Z. S., Lim, K. L., & Yusoff, M. (2019). Carbon emission assessment from different logging activities in production forest of Pahang, Malaysia. Journal of Tropical Forest Science, 31(3), 304–311. doi: 10.26525/jtfs2019. 31.3.304.

Besar, N. A., Suardi, H., Phua, M. H., James, D., Mokhtar, M. Bin, & Ahmed, M. F. (2020). Carbon stock and sequestration potential of an agroforestry system in Sabah, Malaysia. Forests, 11(2), 1–16. doi: 10.3390/f11020210.

Cacho, O. J., Lipper, L., & Moss, J. (2013). Transaction costs of carbon offset projects: A comparative study. Ecological Economics, 88 (February 2018), 232–243. doi: 10.1016/ j.ecolecon.2012.12.008.

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. doi: 10.1007/s00442-005-0100-x.

Domke, G. M., Oswalt, S. N., Walters, B. F., & Morin, R. S. (2020). Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proceedings of the National Academy of Sciences of the United States of America, 117(40), 24649–24651. doi: 10.1073/ pnas.2010840117.

Dong, N. T., Tap, V. H., Mai, N. T. P., & Lien, N. T. H. (2020). Estimation of forest carbon stocks in Ba Be National Park, bac Kan province, Vietnam. Forest and Society, 4(1), 195–208. doi: 10.24259/ fs.v4i1.7848.

Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., … Le Quéré, C. (2014). Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 7(10), 709–715. doi: 10.1038/NGEO2248.

Gagnon, J. L., Clark, N. A., Downing, A. K., Fisher, K. J., Frey, G. E., & Worrell, W. C. (2015). A Guide for New Virginia Woodland Owners Virginia Cooperative Extension. Virginia: Virginia State University, Petersburg.

Ganguly, I., Pierobon, F., & Hall, E. S. (2020). Global warming mitigating role of wood products from Washington state’s private forests. Forests, 11(2), 1–20. doi: 10.3390/f11020194.

Gebeyehu, G., Soromessa, T., Bekele, T., & Teketay, D. (2019). Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia. Journal of Ecology and Environment, 43(1), 1–18. doi: 10.1186/s41610-019-0105-8.

Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4). doi: 10.1088/ 1748-9326/2/4/045023.

IPCC. (2008). 2006 IPCC Guidelines for National Greenhouse Inventories – A primer, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Miwa K., Srivastava N. and Tanabe K. (H. . Eggleston, K. Miwa, N. Srivastava, & K. Tanabe, Eds.). Hayama: IGES, Japan.

Irawan, U. S., & Purwanto, E. (2020). Pengukuran dan Pendugaan Cadangan Karbon pada Ekosistem Hutan Gambut dan Mineral, Studi Kasus di Hutan Rawa Gambut Pematang Gadung dan Hutan Lindung Sungai Lesan, Kalimantan. Bogor, Indonesia: Yayasan Tropenbos Indonesia.

Irland, L. C. (2011). Timber productivity research gaps for extensive forest management. Small-Scale Forestry, 10, 389–400. doi: 10.1007/s11842-011-9155-1.

Irundu, D., Beddu, M. A., & Najmawati, N. (2020). Potensi Biomassa dan Karbon Tersimpan Tegakan di Ruang Terbuka Hijau Kota Polewali, Sulawesi Barat. Jurnal Hutan Dan Masyarakat, 12(1), 49. doi: 10.24259/jhm. v12i1.9675.

Istomo, & Dwisutono, A. N. (2016). Struktur dan komposisi tegakan serta sistem perakaran tumbuhan pada kawasan KARST di taman nasional Bantimurung-Bulusaraung, Resort Pattunuang-Karaenta. Jurnal Silvikuktur Tropika, 07(1), 58–67.

Jevšenak, J., Klopčič, M., & Mali, B. (2020). The effect of harvesting on national forest carbon sinks up to 2050 simulated by the CBM-CFS3 model: A case study from Slovenia. Forests, 11(10), 1–16. doi: 10.3390/f11101090.

Khan, D., Muneer, M. A., Nisa, Z. U., Shah, S., Amir, M., Saeed, S., … Huang, H. (2019). Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China. Advances in Meteorology, 2019. doi: 10.1155 /2019/5692574.

Koirala, A., Kizha, A. R., & Roth, B. E. (2017). Perceiving major problems in forest products transportation by trucks and trailers: A cross-sectional survey. Eur J Forest Eng, 3(1), 23–34.

Körner, C. (2017). A matter of tree longevity. Science, 355(6321), 130–131.

Ministry of Education and Culture. (2013). Inventarisasi Hutan. Jakarta: Direktorat Pembinaan Sekolah Menengah Kejuruan.

Ministry of Forestry. (2013). Monograph model-model alometrik untuk pendugaan biomassa dan stok karbon hutan di Indonesia. Bogor, Indonesia: Badan Litbang Kehutanan.

Mugasha, W. A., Mwakalukwa, E. E., Luoga, E., Malimbwi, R. E., Zahabu, E., Silayo, D. S., … Kashindye, A. (2016). Allometric models for estimating tree volume and aboveground biomass in lowland forests of Tanzania. International Journal of Forestry Research, 2016.

O’Dwyer, J., Walshe, D., & Byrne, K. A. (2018). Wood waste decomposition in landfills: An assessment of current knowledge and implications for emissions reporting. Waste Management, 73, 181–188. doi: 10.1016/j. wasman.2017.12.002.

Pearson, T. R. H., Brown, S., & Casarim, F. M. (2014). Carbon emissions from tropical forest degradation caused by logging. Environment Research Letter, 9, 1–11. doi: 10.1088/1748-9326 /9/3/034017.

Pragasan, L. A. (2020). Tree carbon stock and its relationship to key factors from a tropical hill forest of Tamil Nadu, India. Geology, Ecology, and Landscapes, 1–8. doi: 10.1080/24749508.2020. 1742510.

Reyna-Bowen, L., Lasota, J., Vera-Montenegro, L., Vera-Montenegro, B., & Błońska, E. (2019). Distribution and factors influencing organic carbon stock in mountain soils in Babia Góra National Park, Poland. Applied Sciences (Switzerland), 9(15). doi: 10.3390/app9153070.

Rojas-García, F., Fredericksen, T. S., Vazquez Lozada, S., & Endara Agramont, A. R. (2019). Impact of timber harvesting on carbon storage in montane forests of central Mexico. New Forests, 50(6), 1043–1061. doi: 10.1007/s11056-019-09714-z.

Samsoedin, I., Dharmawan, I. W. S., & Siregar, C. A. (2009). Potensi biomasa karbon hutan alam dan hutan bekas tebangan setelah 30 tahun di hutan penelitian Malinau, Kalimantan Timur. Jurnal Penelitian Hutan dan Konservasi Alam, 6(1), 47–56. doi: 10.20886/jphka.2009.6.1.47-56.

Sharma, C. M., Mishra, A. K., Krishan, R., Tiwari, O. P., & Rana, Y. S. (2016). Variation in vegetation composition, biomass production, and carbon storage in ridge top forests of high mountains of Garhwal Himalaya. Journal of Sustainable Forestry, 35(2), 119–132. doi: 10.1080/ 10549811.2015.1118387.

Shearman, P., Bryan, J., & Laurance, W. F. (2012). Are we approaching ‘peak timber’ in the tropics? Biology Conservation, 151, 17–21. doi: 10.1016/ J.BIOCON.2011.10.036.

Siregar, C. A., & Heriyanto, N. M. (2010). Akumulasi biomassa karbon pada skenario hutan sekunder di Maribaya Bogor Jawa Barat. Jurnal Penelitian Hutan Dan Konservasi Alam, 7, 215–226. doi: 10.20886/jphka.2010.7.3.215-226.

Suberi, B., Tiwari, K. R., Gurung, D. B., Roshan, M., Bajracharya, R. M., & Sitaula, B. K. (2018). Effect of harvesting and non-harvested forest management on carbon stocks. Journal of Environment and Climate Change, 8(3), 152–164. doi: 10.9734/ijecc/2018/v8i327153.

Sugiyono. (2009). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.

Suwardi, A. B., Mukhtar, E., & Syamsuardi. (2013). Komposisi jenis dan cadangan karbon di hutan tropis dataran rendah Ulu Gandut Sumatera Barat. Jurnal Biologi, 12(2), 168–176. doi: 10.14203/beritabiologi.v12i2.529.

Toochi, E. C. (2018). Carbon sequestration: how much can forestry sequester CO2? Forestry Research Engineering International Journal, 2(3), 148‒150. doi: 10.15406/freij.2018.02.00040.

Ullah, M. R., & Al-Amin, M. (2012). Above- and below-ground carbon stock estimation in a natural forest of Bangladesh. Journal of Forest Science, 58(8), 372–379. doi: 10.17221/103/ 2011-JFS.

Whitmore, T. C. (1990). An Intoduction to Tropical Rain Forest (2nd ed.). New York: Oxford University Press.

Williams, C. A., Gu, H., MacLean, R., Masek, J. G., & Collatz, G. J. (2016). Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts. Global and Planetary Change, 143, 66–80. doi: 10.1016/j.gloplacha.2016.06.002.

Yuliara, I. M. (2016). Modul Regresi Linier Sederhana. Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Udayana.

Zhang, C., Weimin, J., Chen, J. M., Wang, X., Yang, L., & Zheng, G. (2015). Disturbance-induced reduction of biomass carbon sinks of China’s forests in recent years. Environment Research Letter, 10, 1–12. doi: 10.1088/1748-9326/10 /11/114021.

Zhou, R., Li, W., Zhang, Y., Peng, M., Wang, C., Sha, L., … Wang, S. (2018). Responses of the carbon storage and sequestration potential of forest vegetation to temperature increases in Yunnan Province, SW China. Forests, 9(227), 1–16. doi: 10.3390/f9050227.

Most read articles by the same author(s)

<< < 1 2 

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.