PENGARUH ZAT EKSTRAKTIF KAYU GAMAL (Gliricidia sepium Jacq.) TERHADAP NILAI KALOR
Main Article Content
Abstract
The development of gamal wood (Gliricidia sepium Jacq.) aims to meet the needs of biomass energy in rural areas. Many
studies on extractives of gamal wood have been carried out, but there is very little information about the effect of extractives on the
calorific value. The effect of extractives on the calorific value can be determined by analyzing extractives compounds contained in the
wood. This study aimed to determine the extractives compounds that affect the wood calorific value. The sawdust of gamal bark and
wood was extracted by successively maceration by using solvents with different polarities. The free-extractives sawdust was then
measured for its calorific value. To ascertain the effect of extractives on the calorific value, the extract of the gamal bark and wood
was added to the oil palm sawdust, then the increase in calorific value was measured. The results showed that the extractives in
gamal bark and wood affect the change of calorific value. The removal of extractives by using different solvents caused a different
decrease in calorific value. The highest decrease in calorific value (4.03%) was obtained by non-polar (n-hexane) soluble extractive
of the gamal bark. The addition of gamal wood extracts to oil palm sawdust also causes an increase in the calorific value.
Phytochemical and LC-MS/MS analysis of n-hexane soluble extractives from gamal bark detected groups of terpene compounds,
amides alkaloids, flavonoids, coumarins, and benzopyrans. Based on the results of this study, the n-hexane soluble compounds was
suspected to have the most influence on the calorific value.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Abdullah, F. O., Hamahameen, B., & Dastan, D. (2021). Chemical constituents of the volatile and nonvolatile, cytotoxic and free radical scavenging activities of medicinal plant: Ranunculus millefoliatus and Acanthus dioscoridis. Polish Journal of Environmental Studies, 30(3), 1981–1989. doi: 10.15244/pjoes/ 128265.
Adejoro, F., & Lajide, L. (2019). Termiticidal and repellency activity of three selected tropical woods against subterranean termite worker (Macrotermes bellicosus). World Applied Sciences Journal, 37(1), 34–40. doi: 10.5829/idosi.wasj.2019.34.40
Ahmad, N. R. (2014). Konversi Biomassa untuk Energi Alternatif di Indonesia: Tinjauan Sumber Daya, Teknologi, Manajemen, dan Kebijakan (H. Abimanyu & S. Hendrana (eds.)). Jakarta: LIPI Press.
Álvarez-Álvarez, P., Pizarro, C., Barrio-Anta, M., Cámara-Obregón, A., María Bueno, J. L., Álvarez, A., Gutiérrez, I., & Burslem, D. F. R. P. (2018). Evaluation of tree species for biomass energy production in Northwest Spain. Forests, 9(4), 1–15. doi: 10.3390/f9040160.
[ASTM] American Society for Testing and Material. (2004). Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter (ASTM E 711-87).
[ASTM] American Society for Testing and Material. (2013). Test Method for Ash In Wood (ASTM D-1102).
[ASTM] American Society for Testing and Material. (2013). Test Method for Fixed Carbon In Wood (ASTM D-3175).
[ASTM] American Society for Testing and Material. (2019). Standard Test Method for Moisture Analysis of Particulate Wood Fuels (ASTM E-872).
[ASTM] American Society for Testing and Material. (2019). Test Method for Volatile Metter in the Analysis of Particular Wood Fuels (ASTM E-872).
Anshariah, Imran, A. M., Widodo, S., & Irvan, U. R. (2020). Correlation of fixed carbon content and calorific value of South Sulawesi Coal, Indonesia. IOP Conference Series: Earth and Environmental Science, 473(1), 1–7. doi: 10.1088/1755-1315/473/1/012106.
Arisandi, R., Ashitani, T., Takahashi, K., Marsoem, S. N., & Lukmandaru, G. (2020). Lipophilic extractives of the wood and bark from Eucalyptus pellita F. Muell grown in Merauke, Indonesia. Journal of Wood Chemistry and Technology, 40(2), 146–154. doi: 10.1080/027738 13.2019.1697295.
Atapattu, A. A. A. J., Pushpakumara, D. K. N. G., Rupasinghe, W. M. D., Senarathne, S. H. S., & Raveendra, S. A. S. T. (2017). Potential of Gliricidia sepium as a fuelwood species for sustainable energy generation in Sri Lanka. Agricultural Research Journal, 54(1), 34. doi: 10.5958/2395-146x.2017.00006.0.
Borchard, N., Bulusu, M., Hartwig, A. M., Ulrich, M., Lee, S. M., & Baral, H. (2018). Screening potential bioenergy production of tree species in degraded and marginal land in the tropics. Forests, 9(10), 1–8. doi: 10.3390/f9100594.
Cavalaglio, G., Cotana, F., Nicolini, A., Coccia, V., Petrozzi, A., Formica, A., & Bertini, A. (2020). Characterization of various biomass feedstock suitable for small-scale energy plants as preliminary activity of biocheaper project. Sustainability, 12(6678), 1–10. doi: 10.3390/su 12166678.
Chormey, D. S., & Bakirdere, S. (2018). Principles and recent advancements in microextraction techniques. In Comprehensive Analytical Chemistry (Vol. 81, pp. 257–294). doi: 10.1016/bs.coac. 2018.03.011.
Chung, M. S., Lee, G. W., Lee, S. S., Chung, B. Y., & Lee, S. (2020). Comparative analysis of volatile terpenoids composition in Rosemary leaves in response to ionizing radiation. Journal of Essential Oil-Bearing Plants, 48–54. doi: 10.1080/09720 60X.2020.1782775.
Da Costa Cordeiro, B. M. P., De Lima Santos, N. D., Ferreira, M. R. A., De Araújo, L. C. C., Junior, A. R. C., Da Conceição Santos, A. D., De Oliveira, A. P., Da Silva, A. G., Da Silva Falcão, E. P., Dos Santos Correia, M. T., Da Silva Almeida, J. R. G., Da Silva, L. C. N., Soares, L. A. L., Napoleão, T. H., Da Silva, M. V., & Paiva, P. M. G. (2018). Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. BMC Complementary and Alternative Medicine, 18(1), 1–10. doi: 10.1186/s12906-018-2350-2.
Dehghanizadeh, M., Cheng, F., Jarvis, J. M., Holguin, F. O., & Brewer, C. E. (2020). Characterization of resin extracted from guayule (Parthenium argentatum): A dataset including GC–MS and FT-ICR MS. Data in Brief, 31, 1–10. doi: 10.1016/j.dib.2020.105989.
Demko, J., & Machava, J. (2022). Tree resin, a macroergic source of energy, a possible tool to lower the rise in atmospheric CO2 levels. Sustainability, 14, 1–18. doi: 10.3390/su1406 3506.
Domingos, I., Ayata, U., Ferreira, J., Cruz-Lopes, L., Sen, A., Sahin, S., & Esteves, B. (2020). Calorific power improvement of wood by heat treatment and its relation to chemical composition. Energies, 13(20), 1–10. doi: 10.3390/en13205322
Gbolade, A., Adedokun, O., Bello, A., & Bello, Z. (2019). Cytotoxic and growth inhibitory activities of Gliricidia sepium (Jacq.) kunth ex walp. (Fabaceae) and Hymenocardia acida Tul. (Phyllanthaceae) stem bark. Nigerian Journal of Pharmaceutical Sciences, 18(2), 1–10.
Henne, R. A., Brand, M. A., Schveitzer, B., & Schein, V. A. S. (2019). Thermal behavior of forest biomass wastes produced during combustion in a boiler system. Revista Arvore, 43(1), 1–9. doi: 10.1590/1806-90882019000100008.
Hoogmartens, I., Vanderzande, D., Martens, H., & Gelan, J. (1996). Effects of carbonisation temperature on charcoal from some tropical trees. Bioresource Technology, 57, 91–94. doi: 10.1016/0379-6779(92)90376-T.
Islam, M. N., Ratul, S. B., Sharmin, A., Rahman, K. S., Ashaduzzaman, M., & Uddin, G. M. N. (2019). Comparison of calorific values and ash content for different woody biomass components of six mangrove species of Bangladesh Sundarbans. Journal of the Indian Academy of Wood Science, 16(2), 110–117. doi: 10.1007/s13196-019-00246-9.
Jannah, N., Saleh, C., & Pratiwi, D. R. (2020). Skrining fitokimia ekstrak etanol dan fraksi-fraksi daun alamanda (Allamanda Catharica L.). Prosiding Seminar Nasional Kimia Berwawasan Lingkungan 2020, 81–85.
Jasmine, T., Sundaram, R. M., Poojitha, M., Swarnalatha, G., Padmaja, J., Kumar, M. R., & Reddy, K. B. (2017). Medicinal propersties of Gliricidia sepium: A review. International Journal of Current Pharmaceutical & Clinical Research, 7(1), 35–39.
Kumar, R., Chandrashekar, N., Prasad, N. R. R., & Tailor, R. (2020). Effect of extractive content on fuelwood characteristics of certain woody and non-woody biomass. Current Science, 118(6), 966–969. doi: 10.18520/cs/v118/i6/966-969.
Mauladdini, R., Nawawi, D. S., & Syafii, W. (2022). Pengaruh zat ekstraktif kayu terhadap nilai kalor. Jurnal Ilmu Kehutanan, 16(1), 64–73. doi: 10.22146/jik.v16i1.2720.
Mulyana, B., Soeprijadi, D., Rohman, R., Purwanto, R. H., & Reorita, R. (2021). A simulation study on forest inventory of gliricidia plantation using a virtual tree map. AIP Conference Proceedings, 2353(30017), 1–7. doi: 10.1063/5.0052673.
Narendra, B. H., Siregar, C. A., & Salim, A. G. (2020). The potency of wood based electricity production from critical land in Indonesia. IOP Conference Series: Materials Science and Engineering, 935(1), 1–9. https://doi.org/10.1088/1757-899X/935/1/012044.
Nukmal, N., Pratami, G. D., Rosa, E., Sari, A., & Kanedi, M. (2019). Insecticidal effect of leaf extract of gamal (Gliricidia sepium) from different cultivars on papaya mealybugs (Paracoccus marginatus, Hemiptera: Pseudococcidae). Journal of Agriculture and Veterinary Science, 12(1), 4–8. https://doi.org/10.9790/2380-1201030408.
Oduola, T., Umar, R. A., Isah, B. A., Bello, M., Aiyelabegan, F., Isa, L. O., & Oduola, G. B. (2018). Use of Gliricidia sepium aqueous leaf extract as an antisickling agent: Oxidative stress biomarkers in wistar rats exposed to the extract. International Journal of Medical and Health Research, 4(August), 79–83.
Oyelere, A. T., & Oluwadare, A. O. (2019). Studies on physical, thermal and chemical properties of wood Gliricidia sepium for potential bioenergy production. International Journal of Biomass and Renewables, 8(2), 28–38.
Ponce-Rodríguez, H. D., Herráez-Hernández, R., Verdú-Andrés, J., & Campíns-Falcó, P. (2019). Quantitative analysis of terpenic compounds in microsamples of resins by capillary liquid chromatography. Molecules, 24(22), 1–12. doi.org/10.3390/molecules24224068
Rajvanshi, A. (1986). Biomass Gasification (Y. Goswami (ed.); Nimbkar Ag). CRC Press.
Rossi, T., Moura, L. F. De, Torquato, P. R., & Brito, J. O. (2013). Effect of extractive removal on the calorific value of Brazilian woods residues. J. Chem. Chem. Eng., 7, 340–343.
Routa, J., Anttila, P., & Asikainen, A. (2017). Wood extractives of finnish pine, spruce and birch – availability and optimal sources of compounds: A literature review. Natural Resources Institute Finland, 73, 1–55. http://urn.fi/URN:ISBN:978-952-326-495-3
Ruiz-Aquino, F., Ruiz-Ángel, S., Feria-Reyes, R., Santiago-García, W., Suárez-Mota, M. E., & Rutiaga-Quiñones, J. G. (2019). Wood chemical composition of five tree species from Oaxaca, Mexico. BioResources, 14(4), 9826–9839. https://doi.org/10.15376/biores.14.4.9826-9839
Seethalashmi, A. (2016). Gliricidia sepium bioenergy resource for power generation. Research Journal of Chemical and Environmental Sciences, 4(3), 32–37.
Sengupta, D., Samburova, V., Bhattarai, C., Kirillova, E., Mazzoleni, L., Iaukea-Lum, M., Watts, A., Moosmüller, H., & Khlystov, A. (2018). Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion. Atmospheric Chemistry and Physics, 18(15), 10849–10867. https://doi.org/10.5194/acp-18-10849-2018
Simorangkir, M., Nainggolan, B., & Silaban, S. (2019). Secondary metabolites phytochemical analysis of n-hexane, ethyl acetate and ethanol extracts of sarang banua (Clerodendrum fragrans Vent Willd) leaves. AISTSSE Conference Proceedings, 1–9. https://doi.org/10.4108/eai.18-10-2018.2287344
Stolarski, M. J., Krzyzaniak, M., Załuski, D., & Niksa, D. (2018). Evaluation of biomass quality of selected woody species depending on the soil enrichment practice. International Agrophysics, 32(1), 111–121. https://doi.org/10.1515/intag-2016-0097
Tamilvanan, A. (2013). Preparation of biomass briquettes using various agro- residues and waste papers. Journal of Biofuels, 4(2), 47–55. https://doi.org/10.5958/j.0976-4763.4.2.006
Uba, G., Dauda, H., Aujara, K. M., & Ali, U. (2020). Solvent extraction and its effects on the phytochemical yield and antioxidant capacity of Commiphora africana (Burseraceae). Bioremediation Science and Technolgy Research, 8(2), 8–11.
Umar, D. F., Hudaya, G. K., & Sulistyohadi, F. (2017). Study on combustion characteristics of coal-biomass for co-firing system as a feedstock of coal gasification process. Indonesian Mining Journal, 20(2), 115–130. doi: 10.30556/imj. vol20.no2.2017.223.
Welfle, D. A., Chingaira, S., & Kassenov, A. (2020). Decarbonising Kenya’s domestic & industry sectors through bioenergy: An assessment of biomass resource potential & GHG performances. Biomass and Bioenergy, 142, 105757. doi: 10.1016/j.biombioe.2020.105757.
Yilmaz, S., Cuhadaroglu, D., & Toroglu, I. (2019). Correlation between non. IOP Conference Series: Earth and Environmental Science, 362(1). doi: 10.1088/1755-1315/362/1/012094.