KARAKTERISASI BIODIESEL DARI MINYAK KEMIRI SUNAN DENGAN KATALIS HETEROGEN SILIKA TERIMPREGNASI KALSIUM OKSIDA (CaO/SiO2 )

Main Article Content

Haryono
Yati B. Yuliyati
Atiek Rostika Noviyanti
Mochammad Rizal
Sarifah Nurjanah

Abstract

Commercial biodiesel of oil palm is controversial as the palm oil is classified as food oil and palm plantation utilizes
fertile land. One potential type of vegetable oil as biodiesel raw material is kemiri sunan (Reutealis trisperma
(Blanco) Airy Shaw) oil. This research aimed to prepare a heterogeneous solid catalyst in the form of an impregnated
SiO2
by CaO catalyst (CaO/SiO2
), to study the effect of the esterification stage on free fatty acid (FFA) content of
oil, and to test the activity of the CaO/SiO2
catalyst during the trans-esterification stage for biodiesel formation. CaO/
SiO2
catalysts were prepared by sol-gel method made from natural materials (egg shells and rice husk). The FFA
content of kemiri sunan oil was determined through various esterification stages namely 1; 1.5; and 2 hours in the
presence of H2
SO4
catalyst. While the trans-esterification stage was carried out under reaction temperature of 60°C,
oil to methanol ratio of 1:9, reaction time of 2 hours and CaO/SiO2
catalyst content of 3%. The results showed that
the esterification stage for 1; 1.5; and 2 hours reduced the FFA content from 12.5% (without esterification) to 0.65%;
0.58%; and 0.54% respectivaly. Biodiesel made from kemiri sunan oil which was synthesized with the addition of
CaO/SiO2
catalyst at optimal conditions of trans-esterification stage fulfilled SNI 7182-2015: Biodiesel based on
density, viscocity, moisture content, iodine number, and cetane number.

Article Details

How to Cite
Haryono, Yati B. Yuliyati, Atiek Rostika Noviyanti, Mochammad Rizal, & Sarifah Nurjanah. (2020). KARAKTERISASI BIODIESEL DARI MINYAK KEMIRI SUNAN DENGAN KATALIS HETEROGEN SILIKA TERIMPREGNASI KALSIUM OKSIDA (CaO/SiO2 ). Jurnal Penelitian Hasil Hutan, 38(1), 1–68. https://doi.org/10.20886/jphh.2020.38.1.10-20
Section
Articles

References

Almeida, D. T. de, Viana, T. V., Costa, M. M., Silva, C. de S., & Feitosa, S. (2019). Effects of different storage conditions on the oxidative stability of crude and refined palm oil, olein and stearin (Elaeis guineensis). Food Science and Technology, 39(suppl 1), 211–217. doi: 10.1590/fst.43317.

Azam, M. M., Waris, A., & Nahar, N. M. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy, 29(4), 293–302. doi: 10.1016/j.biombioe.2005.05.001.

Standar Nasional Indonesia (SNI). (2015). Biodiesel (SNI 7182:2015). Badan Standardisasi Nasional, Jakarta.

Banković-Ilić, I. B., Miladinović, M. R., Stamenković, O. S., & Veljković, V. B. (2017). Application of nano CaO–based catalysts in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 72(December 2018), 746–760. doi: 10.1016/j.rser.2017.01.076.

Correia, L. M., Saboya, R. M. A., de Sousa Campelo, N., Cecilia, J. A., Rodríguez-Castellón, E., Cavalcante, C. L., & Vieira, R. S. (2014). Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology, 151, 207–213. doi: 10.1016/j. biortech.2013.10.046.

Dauqan, E., & Sani, H. (2011). Fatty acids composition of four different vegetable oils (red palm olein, palm olein, corn oil and coconut oil) by gas chromatography. International Conference on Chemistry Engineering, 14, 31–34. doi: 10.4236/fns.2011.24036.

Dawodu, M. O., Olutona, G. O., & Obimakinde, S. O. (2015). Effect of temperature on the chemical characteristics of vegetable oils consumed in Ibadan, Nigeria. Pakistan Journal of Nutrition, 14(10), 698–707. doi: 10.3923/pjn. 2015.698.707.

Deutschmann, O., Knozinger, H., Kochloefl, K., & Turek, T. (2009). Heterogeneous catalysis and solid catalyst. Weinheim-Germany: Wiley-VCH Verlag GmbH & Co.

Djenar, N.S., & Lintang, N. (2012). Esterifikasi minyak kemiri sunan (Aleurites trisperma) dalam pembuatan biodiesel. Bionatura-Jurnal Ilmu Hayati dan Fisik, 14(3), 229–235.

Ghorbani, F., Sanati, A. M., & Maleki, M. (2015). Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environmental Studies of Persian Gulf, 2(1), 56–65.

Habibie, S., & Clarke, S. (2012). The current status and future development of biodiesel in Indonesia. Jurnal Sains dan Teknologi Indonesia, 14(1), 62–73.

Haruna, I., Fatima, M., & Ndam, V. (2015). Effect of high free fatty acid feedstock on methyl esters yield using bulk calcium oxide catalyst. International Journal of Scientific & Technology Research, 4(3), 186–189.

Haryono, Natanael, C. L., Rukiah, & Yuliyati, Y. B. (2018). Kalsium oksida mikropartikel dari cangkang telur sebagai katalis pada sintesis biodiesel dari minyak goreng bekas. Jurnal Material Dan Energi Indonesia, 8(1), 8–15.

Hendra, D. (2014). Pembuatan biodiesel dari biji kemiri sunan. Jurnal Penelitian Hasil Hutan, 32(1), 37–45.

Juan, J. C., D.A., K., Wu, T., & Taufiq. (2011). Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresource Technology, 2(102), 452–460.

Kim, M., Salley, S. O., & Ng, K. Y. S. (2008). Transesterification of glycerides using a heterogeneous resin catalyst combined with a homogeneous catalyst. Energy and Fuels, 22(6), 3594–3599. doi: 10.1021/ef800443x.

Knothe, G., Gerpen, J. V., & Krahl, J. (2005). The biodiesel handbook. Champaign-Illinois: : AOCS Press.

Kramadibrata, A. M., Muhaemin, M., Nurjanah, S., Mardawati, E., Daradjat, W., Hendarto, & Rosalinda, S. (2017). Rekayasa proses produksi biodiesel dan aplikasinya pada engine termodifikasi. Laporan Academic Leadhership Grant. Universitas Padjadjaran, Bandung.

Lani, N. S., Ngadi, N., Yahya, N. Y., & Rahman, R. A. (2017). Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. Journal of Cleaner Production, 146, 116–124. doi: 10.1016/j.jclepro.2016.06.058.

Le, N.T.H., & Jeong, H. . (2014). Synthesis and characterization of uniform silica nanoparticles on nickel substrate by spin coating and sol-gel method. Chemical Physics Letters, 349–354.

Loy, C. W., Matori, K. A., Lim, W. F., Schmid, S., Zainuddin, N., Wahab, Z. A., … & Zaid, M. H. M. (2016). Effects of Calcination on the Crystallography and Nonbiogenic Aragonite Formation of Ark Clam Shell under Ambient Condition. Advances in Materials Science and Engineering, 1(1). doi: 10.1155/2016/2914368.

Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., & Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules, 20(9), 17339–17361. doi: 10.3390/molecules 200917339.

Maneerung, T., Kawi, S., Dai, Y., & Wang, C.-H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, (123), 487–497.

Mat, R., Samsudin, R. A., Mohamed, M., & Johari, A. (2012). Solid catalysts and their application in biodiesel production. Bulletin of Chemical Reaction Engineering and Catalysis, 7(2), 142–149. doi: 10.9767/bcrec.7.2.3047.142-149.

Murugesan, A., Umarani, C., Subramanian, R., & Nedunchezhian, N. (2009). Biodiesel as an alternative fuel for diesel engines-A review. Renewable and Sustainable Energy Reviews, 3(13), 653–662.

Nurjanah, S., Kramadibrata, A. M., Muhaemin, M., Handarto, Herwanto, T., Saukat, M., … Haryono. (2019). Study on different capacity of transesterification process in biodiesel production from kemiri sunan (Reutalis trisperma). IOP Conference Series.: Earth Environmental Science, 1–10.

Pranowo, D., Syakir, M., Prastowo, B., Herman, M., Aunillah, A., & Sumanto. (2013). Pembuatan biodiesel dari kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw) dan pemanfaatan hasil samping. Jakarta: IAARD Press.

Reyero, I., Arzamendi, G., & Gandía, L. M. (2014). Heterogenization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts. Chemical Engineering Research and Design, 92(8), 1519–1530. doi: 10.1016/j.cherd.2013.11.017.

Sanford, S., White, J., & Shah, P. (2009). Feedstock and biodiesel characteristics report. Renewable Energy Group Inc., 1–136. Diunduh dari http://www.biodiesel.org/reports/20091117_gen-398.pdf, pada 10 Oktober 2019.

Supriyadi, S., Purwanto, P., Anggoro, D. D., & Hermawan. (2018). Enhancing biodiesel from kemiri sunan oil manufacturing using ultrasonics. E3S Web of Conferences, 31, 1–5. doi: 10.1051/e3sconf/20183102014.

Tangboriboon, N., Kunanuruksapong, R., & Sirivat, A. (2012). Preparation and properties of calcium oxide from eggshells via calcination. Materials Science- Poland, 30(4), 313–322. doi: 10.2478/s13536-012-0055-7.

Witoon, T., Bumrungsalee, S., Vathavanichukul, P., Palitsakun, S., Saisriyoot, M., Faungnawakij, K. (2014). Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst. Bioresource Technology, (156), 329–334. doi: 10.1016/j.biortech.2014. 01.076.

Yamaguchi, N., Masuda, Y., Yamada, Y., Narusawa, H., Han-Cheol, C., Tamaki, Y., & Miyazaki, T. (2015). Synthesis of CaO-SiO compounds using materials extracted from industrial wastes. Open Journal of Inorganic Non-Metallic Materials, 05(01), 1–10. doi: 10.4236/ojinm.2015.51001.

Yan, S., Kim, M., Salley, S. O., & Simon, K. Y. (2009). Oil transesterification over calcium oxides modified with lanthanum. Applied Catalysis A: General, 360(2), 163–170. doi: 10.1016/j.apcata. 2009.03.015.

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.