SIFAT KIMIA DAN KUALITAS ARANG LIMA JENIS KAYU ASAL KALIMANTAN BARAT

Main Article Content

Lisna Efiyanti
Suci Aprianty Wati
Dadang Setiawan
Saepulloh
Gustan Pari

Abstract

Various wood producing tree species grows in large forest area of Indonesia. Wood could be used for various
products such as furniture, crafts, building constructions and other products like charcoals. Utilization of products
is also generaly associated with physical, chemical, anatomy and mechanics characteristic of wood. This research aims
to determine chemical and extractive composition of five lesser-known wood species from West Kalimantan, namely
kumpang, bengkulung, sawang, kempili and ubar wood, and their influences on charcoal properties produced from
corresponding wood types. The chemical and extractive components of the five wood types were analyzed according
to the Indonesian National Standard (SNI) method. Each wood species was heated into charcoal through pyrolysis
method with a temperature of 500°C for 4 hours. Results show that the cellulose, pentosan, lignin of these five wood
species are 51.53−61.16%; 13.93−17.67%; and 26.55−38.46% respectively. The solubility in cold water, hot
water, NaOH 1% and alcohol-benzene are ranged from 0.632−2.640%; 3.28−8.41%; 10.41−19.01%; and
3.38−4.3% respectively. Water, ash and silica contents from these woods are respectively ranged from 7.97−9.97%;
0.32−2.14%; and 0.21−0.68%. The charcoal products were obtained from five wood types generally have fulfilled the
Indonesian National Standard (SNI) requirements with the value of water, ash, volatile matter and carbon contents
are ranged from 0.01−0.69%; 0.59−5.40; 13.95−26.15%; and 73.05−84% respectively. The best quality of
charcoal was obtained from kumpang wood charcoal.

Article Details

How to Cite
Lisna Efiyanti, Suci Aprianty Wati, Dadang Setiawan, Saepulloh, & Gustan Pari. (2025). SIFAT KIMIA DAN KUALITAS ARANG LIMA JENIS KAYU ASAL KALIMANTAN BARAT. Jurnal Penelitian Hasil Hutan, 38(1), 55–68. https://doi.org/10.20886/jphh.2020.38.1.45-56
Section
Articles

References

Adamu, H., Sabo, A., Chinade, A. A., & Lame, A. F. (2018). Exploration of influence of chemical composition on combustion and fuel characteristics of wood-charcoals commonly used in Bauchi State, Nigeria. International Joutnal of Renewable Energy Research, 8(3), 1508–1519.

Alpian, Prayitno, T. A., Sutapa, G. J., & Budiadi. (2011). Kualitas aranng kayu gelam (Melaleuca cajuputi). Jurnal Ilmu dan Teknologi Kayu Tropis, 9(2), 141–152.

Andrade, F. W. C., Filho, M. T., & Moutinho, V. H. P. (2018). Influence of wood physical properties on charcoal from Eucalyptus spp. Floresta e Ambiente, 25(3), 1–8. doi: 10.1590/2179-8087. 017615.

Astuti, S., Yahya, R., & Sundaryono, A. (2018). Analisis kadar komponen kimia pelepah sawit varietas dura sebagai bahan baku pulp yang diterapkan pada pembelajaran kimia. PENDIPA Journal of Science Education, 2(1), 69–75. doi: 10.33369/pendipa.2.1.69-75.

Carrari, E., Ampoorter, E., Bussotti, F., Coppi, A., Garcia Nogales, A., Pollastrini, M., … Selvi, F. (2018). Effects of charcoal hearth soil on forest regeneration: Evidence from a two-year experiment on tree seedlings. Forest Ecology and Management, 427(April), 37–44. doi: 10.1016/ j.foreco.2018.05.038.

Chidumayo, E. N. (2019). Is charcoal production in Brachystegia-Julbernardia woodlands of Zambia sustainable? Biomass and Bioenergy, 125(December 2018), 1–7. doi: 10.1016/j. biombioe.2019.04.010.

Christiana. O, I., Olusegun, A. S., & Kazeem, A... (2014). Evaluation of combustion characteristic of charcoal from different tropical wood species. International Organization of Scientific Research Journal of Engineering, 4(4), 57–64. doi: 10.9790/3021-04465764.

Darmawan, S., Syafii, W., Wistara, N. J., Maddu, A., & Pari, G. (2015). Kajian struktur arang -pirolisis , arang-hidro dan karbon aktif dari kayu Acacia mangium Willd menggunakan difraksi Sinar-X. Jurnal Penelitian Hasil Hutan 33(2), 81–92.

Denshchikov, K. K., Izmaylova, M. Y., Zhuk, A. Z., Vygodskii, Y. S., Novikov, V. T., & Gerasimov, A. F. (2010). 1-Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors. Electrochimica Acta, 55(25), 7506–7510. doi: 10.1016/j.electacta.2010.03.065.

Dufourny, A., Van De Steene, L., Humbert, G., Guibal, D., Martin, L., & Blin, J. (2019). Influence of pyrolysis conditions and the nature of the wood on the quality of charcoal as a reducing agent. Journal of Analytical and Applied Pyrolysis, 137, 1–13. doi: 10.1016/j.jaap.2018. 10.013.

Fatimah, S., Susanto, M., & Lukmandaru, G. (2015). Studi komponen kimia kayu Eucalyptus pellita F. Muell dari pohon plus hasil uji keturunan generasi kedua di Wonogiri, Jawa Tengah. Jurnal Ilmu Kehutanan, 7(1), 57–69. doi: 10.22146/ jik.6138.

Hastuti, N., Efiyanti, L., Pari, G., Saepuloh, S., & Setiawan, D. (2017). Komponen kimia dan potensi penggunaan lima jenis kayu kurang dikenal asal Jawa Barat. Jurnal Penelitian Hasil Hutan, 35(1), 15–27. doi: 10.20886/jphh.2017. 35.1.15-27.

Hastuti, N., Pari, G., Setiawan, D., Mahpudin, & Saepuloh. (2015). Kualitas arang enam jenis kayu asal Jawa Barat. Jurnal Peneltian Hasil Hutan, 33(4), 337–346.

Iskandar, T., & Rofiatin, U. (2017). Karakteristik biochar berdasarkan jenis biomassa dan parameter proses pyrolisis. Jurnal Teknik Kimia, 12(1), 28–34.

Indonesian Trade Promotion Center Osaka. (2016). Market brief: Wood charcoal Hs 4402: 1-38. Diakses dari http://itpc.or.jp/wp-content/uploads/2016/09/Market-Brief-ITPC-Osaka-2016-Charcoal-HS-402.pdf, diakses pada 9 Maret 2020.

Karlinasari, L., Nawawi, D., & Widyani, M. (2010). Study of anatomic and mechanical properties of wood relation with acoustical properties. Bionatura-Jurnal Ilmu-Ilmu Hayati dan Fisik, 12(3), 110–116.

Kementerian Lingkungan Hidup & Kehutanan. (2019). Statistik lingkungan hidup dan kehutanan tahun 2018. Sekretariat Jenderal Kementerian Lingkungan Hidup dan Kehutanan, Jakarta.

Kongprasert, N., Wangphanich, P., & Jutilarptavorn, A. (2019). Charcoal briquettes from madan wood waste as an alternative energy in Thailand. Procedia Manufacturing, 30, 128–135. doi: 10.1016/j.promfg.2019.02.019.

Kumar, A., Gupta, A., Sharma, K. V., Nasir, M., & Khan, T. A. (2013). Influence of activated charcoal as filler on the properties of wood composites. International Journal of Adhesion and Adhesives, 46, 34–39. doi: 10.1016/j.ijadhadh. 2013.05.017.

Labbé, N., Harper, D., Rials, T., & Elder, T. (2006). Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis. Journal of Agricultural and Food Chemistry, 54(10), 3492–3497. doi: 10.1021/jf053062n.

Lee, C. S., Yi, E. H., Kim, H. R., Huh, S. R., Sung, S. H., Chung, M. H., & Ye, S. K. (2011). Anti-dermatitis effects of oak wood vinegar on the DNCB-induced contact hypersensitivity via STAT3 suppression. Journal of Ethnopharmacology, 135(3), 747–753. doi: 10.1016/j.jep.2011.04. 009.

Liu, L., Guo, X., Wang, S., Li, L., Zeng, Y., & Liu, G. (2018). Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts. Ecotoxicology and Environmental Safety, 150(35), 270–279. doi: .0.1016/j.ecoenv.2017. 12.037.

Maes, W. H., & Verbist, B. (2012). Increasing the sustainability of household cooking in developing countries: Policy implications. Renewable and Sustainable Energy Reviews, 16(6), 4204–4221. doi: 10.1016/j.rser.2012.03.031.

Mandre, M. (2006). Influence of wood ash on soil chemical composition and biochemical parameters of young Scots pine. Proceedings of the Estonian Academy of Sciences: Biology, Ecology, 55(2), 91–107.

Miranda, I., Sousa, V., Ferreira, J., & Pereira, H. (2017). Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PLoS ONE, 12(6), 1–14. doi: 10.1371/journal.pone. 0179268.

Nawawi, D. S., Wicaksono, S. H., & Rahayu, I. S. (2013). Kadar zat ekstraktif dan susut kayu nangka (Arthocarpus heterophyllus) dan mangium (Acacia mangium). Jurnal Ilmu dan Teknologi Kayu Tropis, 11(1), 46–54.

Nejadshafiee, V., & Islami, M. R. (2019). Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Materials Science and Engineering C, 101, 42–52. doi: 10.1016/j.msec.2019.03.081.

Nisgoski, S., Magalhães, W.L.E., Batista, F.R.R., França, R.F., & Muñiz, G.I.B. de. (2014). Anatomical and energy characteristics of charcoal made from five species. Acta Amazonica, 44(3), 367–372. doi.org: 10.1590/ 1809-4392201304572.

Oyedun, A. O., Lam, K. L., & Hui, C. W. (2012). Charcoal production via multistage pyrolysis. Chinese Journal of Chemical Engineering, 20(3), 455–460. doi: 10.1016/S1004-9541(11)60206-1.

Palomo, J., Rodríguez-Mirasol, J., & Cordero, T. (2019). Methanol dehydration to dimethyl ether on Zr-loaded P-containing mesoporous activated carbon catalysts. Materials, 12(13), 1-12. doi.org/10.3390/ma12132204.

Papari, S., & Hawboldt, K. (2015). A review on the pyrolisis of woody biomass to bio-oil : Focus on kinetic models. Renewable and Sustainable Energy Reviews, 52, 1580–1595. doi: 10.1016/j.rser. 2015.07.191.

Pasaribu, G., Sipayung, B., & Pari, G. (2007). Analisis komponen kimia empat jenis kayu. Jurnal Penelitian Hasil Hutan, 25(4), 327–333.

Pastor-Villegas, J., Pastor-Valle, J. F., Rodríguez, J. M. M., & García, M. G. (2006). Study of commercial wood charcoals for the preparation of carbon adsorbents. Journal of Analytical and Applied Pyrolysis, 76(1–2), 103–108. doi: 10. 1016/j.jaap.2005.08.002.

Pereira, B. L. C., Carneiro, A. D. C. O., Carvalho, A. M. M. L., Colodette, J. L., Oliveira, A. C., & Fontes, M. P. F. (2013). influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. BioResources, 8(3), 4574–4592. doi: 10.15376/biores.8.3.4574-4592.

Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R.M.C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148–153. doi: 10.1016/j.biortech.2011. 11.122.

Rusanen, A., Lahti, R., Lappalainen, K., Kärkkäinen, J., Hu, T., Romar, H., & Lassi, U. (2019). Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst. Catalysis Today. doi: 10.1016/j.cattod.2019.02.040.

Sánchez-Sánchez, C., González-González, A., Cuadros-Salcedo, F., Gómez-Serrano, V., & Cuadros-Blázquez, F. (2019). Charcoal as a bacteriological adherent for biomethanation of organic wastes. Energy, 179, 336–342. doi: 10.1016/j.energy.2019.04.192.

Sangsuk, S., Suebsiri, S., & Puakhom, P. (2018). The metal kiln with heat distribution pipes for high quality charcoal and wood vinegar production. Energy for Sustainable Development, 47, 149–157. doi: 10.1016/j.esd.2018.10.002.

Shi, Y., Chrusciel, L., & Zoulalian, A. (2007). Production of charcoal from different wood species. Récents Progrès En Génie Des Procédés, 96 doi:/hal-00265340.

Silva, M. F. da, Fortes, M. M., & Sette Junior, C. R. (2018). Characteristics of wood and charcoal from Eucalyptus clones. Floresta e Ambiente, 25(3). doi: 10.1590/2179-8087.035016.

Singh, K., Giri, B. S., Sahi, A., Geed, S. R., Kureel, M. K., Singh, S., … Singh, R. S. (2017). Biofiltration of xylene using wood charcoal as the biofilter media under transient and high loading conditions. Bioresource Technology, 242, 351–358. doi: 10.1016/j.biortech.2017.02.085.

Singh, K., Singh, R. S., Rai, B. N., & Upadhyay, S. N. (2010). Biofiltration of toluene using wood charcoal as the biofilter media. Bioresource Technology, 101(11), 3947–3951. doi: 10.1016/ j.biortech.2010.01.025.

Sokanandi, A., Pari, G., Setiawan, D., & Saepuloh. (2014). Komponen kimia sepuluh jenis kayu kurang dikenal: Kemungkinan penggunaan sebagai bahan baku pembuatan bioetanol. Jurnal Penelitian Hasil Hutan, 32(3), 209–220.

Stackpole, D. J., Vaillancourt, R. E., Alves, A., Rodrigues, J., & Potts, B. M. (2011). Genetic variation in the chemical components of Eucalyptus globulus wood. G3: Genes, Genomes, Genetics, 1(2), 151–159. doi: 10.1534/g3.111. 000372.

Standar Nasional Indonesia (SNI). (1989). Uji pentosan kayu (SNI 01-1561-1989). Badan Standardisasi Nasional, Jakarta.

Standar Nasional Indonesia (SNI). (1989). Pulp kayu dan kayu, kadar abu, silika dan silikat (SNI 14-1031-1989). Badan Standardisasi Nasional, Jakarta.

Standar Nasional Indonesia (SNI). (1990). Uji kelarutan kayu dan pulp dalam larutan natrium hidroksida satu persen (SNI 14-1838-1990). Badan Standardisasi Nasional, Jakarta.

Standar Nasional Indonesia (SNI). (1989). Uji kadar sari (ekstrak alkohol benzena dalam pulp dan kayu (SNI 14-1032-1989). Badan Standardisasi Nasional, Jakarta.

Standar Nasional Indonesia (SNI). (1989). Arang kayu (SNI 01-1683-1989). Badan Standardisasi Nasional, Jakarta.

Standar Nasional Indonesia (SNI). (1989). Uji kadar kelarutan kayu dalam air dingin dan air panas (SNI 14-1305-1989). Badan Standardisasi Nasional, Jakarta.

Usmana, A. S., Rianda, S., & Novia. (2012). Pengaruh volume enzim dan waktu fermentasi terhadap kadar etanol (bahan baku tandan kosong kelapa sawit dengan pretreatment alkali. Jurnal Teknik Kimia Kimia, 18(2), 17–25.

Wang, H., Han, J., Bo, Z., Qin, L., Wang, Y., & Yu, F. (2019). Non-thermal plasma enhanced dry reforming of CH4 with CO2 over activated carbon supported Ni catalysts. Molecular Catalysis, 475(May). doi: 10.1016/j.mcat.2019. 110486.

Wise. L.E. (1944). Wood chemistry. New York: Reinhold Publisher Corporation.

Yang, Z., Zhang, G., Xu, Y., & Zhao, P. (2019). One step N-doping and activation of biomass carbon at low temperature through NaNH2: An effective approach to CO2 adsorbents. Journal of CO2 Utilization, 33(April), 320–329. doi: 10.1016/j.jcou.2019.06.021.

Yunanta, R. R. K., Lukmandaru, G., & Fernandes, A. (2014). Sifat kimia dari kayu Shorea retusa, Shorea macroptera, dan Shorea macrophylla. Jurnal Penelitian Dipterokarpa, 8(1), 15–24.

Zhang, W. B., Li, W. Z., & Zheng, B. S. (2012). Comparative analysis on chemical composition and charcoal characterization of two Miscanthus species. Advanced Materials Research, 415–417(December 2011), 1265–1272. doi: 10.4028/www.scientific.net/AMR.415-417.12 65.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.