PRODUKSI DAN APLIKASI ARANG KOMPOS BIOAKTIF DI LAHAN PERTANIAN SEBAGAI MODEL PEMBERDAYAAN MASYARAKAT

Main Article Content

Nur Adi Sapura
Gusmailina
Sri Komarayati
Gustan Pari

Abstract

Community empowerment has been carried out at the Kumala Lestari Islamic boarding school, located in Sukaresmi Village,
Cianjur Regency, Indonesia. The community was involved in the manufacture of bioactive compostable charcoal (ARKOBA) and
its application in agricultural areas. The study was conducted through comparison of rice planting using chemical fertilizers-pesticides
and those with ARKOBA-liquid smoke. The yield amount was measured by paddy crop productivity per hectare after 4 month
period. The study was conducted by production of biochar from sawmill waste using a modified drum reactor. The reactor temperature
was set into 400–450°C, while the retention time was set into 6 hours. The process produces charcoal and liquid smoke.
ARKOBA production was carried out by mixing compost: charcoal: activator, with a composition of 85%: 10%: 5%. Meanwhile,
the ARKOBA dose was set to 400 kg/1000m2
. The result shows that the productivity of rice threated was higher than those of
chemical fertilizers. Rice productivity was recorded at 3.2 tons/ha against 2.98 tons/ha in the Ciranjang and 4 tons/ha compared
to 3.1 tons/ha in the Sukaresmi demonstration plot. Mixing ARKOBA and liquid smoke threatment provides a surplus of
around 7.4–29% than chemical applications and becomes recommended technology for increasing rice productivity.

Article Details

How to Cite
Nur Adi Sapura, Gusmailina, Sri Komarayati, & Gustan Pari. (2022). PRODUKSI DAN APLIKASI ARANG KOMPOS BIOAKTIF DI LAHAN PERTANIAN SEBAGAI MODEL PEMBERDAYAAN MASYARAKAT. Jurnal Penelitian Hasil Hutan, 40(2), 49–60. https://doi.org/10.20886/jphh.2022.40.2.49%E2%80%9360
Section
Articles

References

Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295–306. doi: 10.1016/j.scitotenv.2015. 11.054.

Agegnehu, G., Bird, M. I., Nelson, P. N., & Bass, A. M. (2015). The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol. Soil Research, 53(1), 1. doi: 10. 1071/sr14118.

Anawar, H. M., Strezov, V., Akter, F., & Kader, A. (2017). Impact of biochar on soil fertility and behavior of xenobiotics in soil. In Xenobiotics in the Soil Environment (49), 299–318. doi: 10.1007/ 978-3-319-47744-2.

Badan Pusat Statistik. (2018). Luas tanaman padi menurut kecamatan di kabupaten Cianjur (hektar). https://cianjurkab.bps.go.id/indicator/53/ 86/1/luas-tanam-padi-menurut-kecamatan-di-kabup aten-cianjur-hektar-2018.html.

Bass, A. M., Bird, M. I., Kay, G., & Muirhead, B. (2016). Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Science of the Total Environment, 550, 459–470. doi: 10.1016/j. scito tenv.2016.01.143.

Basso, D., & Pavanetto, R. (2017). Greenpeat: An innovative sustainable material recovered from waste. The 21th International Trade Fair of Material & Energy Recovery and Sustainable Development, 9–16.

Bayabil, H. K., Stoof, C. R., Lehmann, J. C., Yitaferu, B., & Steenhuis, T. S. (2015). Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed. Geoderma, 243–244, 115–123. doi: 10.1016/j.geoderma. 2014.12.015.

Bonanomi, G., Ippolito, F., & Scala, F. (2015). A “black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. Journal of Plant Pathology, 97(2), 223–234. doi: 10.4454/jpp.v97i2.3381.

Citraresmini, A., & Bachtiar, T. (2016). Dinamika fosfat pada aplikasi kompos jerami-biochar dan pemupukan fosfat pada tanah sawah. Ilmiah Aplikasi Isotop dan Radiasi, 12(2), 133–146.

Coban, H., Miltner, A., Centler, F., & Kästner, M. (2016). Effects of compost, biochar and manure on carbon mineralization of biogas residues applied to soil. European Journal of Soil Science, 67(2), 217–225. doi: 10.1111/ejss.12326.

Darby, I., Xu, C. Y., Wallace, H. M., Joseph, S., Pace, B., & Bai, S. H. (2016). Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar. Environmental Science and Pollution Research, 23(11), 11267–11278. do: 10.1007/s11356-016-6336-7.

Gabi-mirela, M., Matei, S., Victoria, M., & Sorina, D. (2017). Microbiological characterization of suppressive forest soil from Enisala. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series 46, 46(1), 341–347.

Gale, N., Halim, A., Horsburgh, M., & Thomas, S. C. (2017). Comparative responses of early-successional plants to charcoal soil amendments. Ecosphere, 8(10). doi: 10.1002/ ecs2.1933.

Gupta, T. (2017). Historical production and use of carbon materials: The activated carbon. dalam Carbon. doi: 10.1007/978-3-319-66405-7.

Gusmailina. (2009). Isolasi dan seleksi mikroba potensial sebagai aktivator pengomposan untuk mendekomposisi limbah kulit mangium. Jurnal Penelitian Hasil Hutan, 27(4), 352–368.

Gusmailina. (2010a). Pengaruh arang kompos bioaktif terhadap pertumbuhan anakan bulian dan gaharu. Jurnal Penelitian Hasil Hutan, 28(2), 93–110.

Gusmailina. (2010b). Pengaruh arang kompos bioaktif terhadap pertumbuhan anakan bulian dan gaharu. Jurnal Penelitian Hasil Hutan, 28(2), 1–26.

Gusmailina, Komarayati, S., & Wibisono, H. S. (2018). Pengaruh arang dan asap cair terhadap pertumbuhan anakan Gyrinops sp. Jurnal Penelitian Hasil Hutan, 36(3), 23–31.

Gusmaliana & Gustan Pari. (2002). Pengaruh pemberian arang terhadap pertumbuhan tanaman cabai merah (Capsicum annum). Buletin Penelitian Hasil Hutan, 20(3), 217–229.

Igalavithana, A. D., Ok, Y. S., Niazi, N. K., Rizwan, M., Al-Wabel, M. I., Usman, A. R. A., … Lee, S. S. (2017). Effect of corn residue biochar on the hydraulic properties of sandy loam soil. Sustainability (Switzerland), 9(2), 1–10. doi: 10.3390/su9020266.

Junaedi, A., Rojidin, A., & Sutrisno, E. (2009). Pembuatan arkoba dari limbah penyulingan nilam. Jurnal Penelitian Hasil Hutan, 27(6), 106–114.

Kang, S.-W., Kim, S.-H., Park, J.-H., Seo, D.-C., Ok, Y. S., & Cho, J.-S. (2018). Effect of biochar derived from barley straw on soil physicochemical properties, crop growth, and nitrous oxide emission in an upland field in South Korea. Environmental Science and Pollution Research. 25, 25813–25821 (2018). doi: 10.1007/ s11356-018-1888-3.

Kerré, B., Bravo, C. T., Leifeld, J., Cornelissen, G., & Smolders, E. (2016). Historical soil amendment with charcoal increases sequestration of non-charcoal carbon: A comparison among methods of black carbon quantification. European Journal of Soil Science, 67(3), 324–331. doi: 10.1111/ ejss.12338.

Kerré, Bart, Willaert, B., Cornelis, Y., & Smolders, E. (2017). Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability. European Journal of Agronomy, 91(April), 10–15. doi: 10.1016/ j.eja.2017.09.003.

Komarayati, S., & Pari, G. (2012). Arang hayati dan turunannya sebagai stimulan pertumbuhan jabon dan sengon. Buana Sains, 12(1), 1–6.

Komarayati, S. (1996). Pemanfaatan serbuk gergaji limbah industri sebagai kompos. Penelitian Hasil Hutan, 14(9), 337–343.

Komarayati, S. (2004). Penggunaan arang kompos pada media tumbuh anakan mahoni. Jurnal Penelitian Hasil Hutan, 22(4), 193–203.

Komarayati, S., Gusmailina, G., & Pari, G. (2011). Produksi cuka kayu hasil modifikasi tungku arang terpadu. Jurnal Penelitian Hasil Hutan, 29, 234–247.

Komarayati, S., Gusmailina, & Pari, G. (2002). Pembuatan kompos dan arang kompos dari serasah dan kulit kayu tusam. Buletin Penelitian Hasil Hutan, 20(3), 231–242.

Komarayati, S., Gusmailina, & Pari, G. (2003). Aplikasi arang kompos pada anakan tusam (Pinus merkusii). Buletin Penelitian Hasil Hutan, 21(1), 15–21.

Komarayati, S., & Indrawati, I. (2003). Isolasi dan identifikasi mikroorganisme dalam arang kompos. Buletin Penelitian Hasil Hutan, 21(3), 251–258.

Komarayati, S., & Pari, G. (2014). The combination of additions of biochar and wood vinegar on jabon and sengon growth. Jurnal Penelitian Hasil Hutan, 32(1), 12–20.

Komarayati, S., & Santoso, E. (2011). Arang dan cuka kayu: Produk HHBK untuk stimulan pertumbuhan mengkudu (Morinda citrifolia). Jurnal Penelitian Hasil Hutan, 29(2), 155–178.

Koyama, S., Katagiri, T., Minamikawa, K., Kato, M., & Hayashi, H. (2016). Effects of rice husk charcoal application on rice yield, methane emission, and soil carbon sequestration in andosol paddy soil. Japan Agricultural Research Quarterly, 50(4), 319–327. doi: 10.6090/jarq. 50.319.

Leal, O. dos A., Dick, D. P., Lombardi, K. C., Maciel, V. G., González-Pérez, J. A., & Knicker, H. (2015). Soil chemical properties and organic matter composition of a subtropical Cambisol after charcoal fine residues incorporation. Journal of Soils and Sediments, 15(4), 805–815. doi: 10.1007/s11368-014-1040-z.

Nurhayati, T., & Adalina, Y. (2009). Analisis teknis dan finansial produksi arang dan cuka kayu dari limbah industri penggergajian dan pemanfaatannya. Jurnal Penelitian Hasil Hutan, 27(4), 337–351.

Nurhayati, T., Sylviani, & Mahpudin. (2003). Analisis teknis dan ekonomis produksi terpadu arang dan cuka kayu dari tiga jenis kayu. Jurnal Penelitian Hasil Hutan, 21, 155–166.

Ohsowski, B. M., Dunfield, K., Klironomos, J. N., & Hart, M. M. (2018). Plant response to biochar, compost, and mycorrhizal fungal amendments in post-mine sandpits. Restoration Ecology, 26(1), 63–72. doi: 10.1111/rec.12528.

Pari, G. (2014). Biochar technology as a go green movement in Indonesia. Indonesian Journal of Wetlands Environmental Management, 2(1), 84–91.

Pari, G., Roliadi, H., & Komarayati, S. (2013). Biochar for forestry and agricultural production. Biochar for Future Food Security: Learning from Experiences and Identifying Research Priorities, 5–10.

Pasaribu, R. A. (1987). Pemanfaatan serbuk gergaji jeungjing sebagai kompos untuk pupuk tanaman. Jurnal Penelitian Hasil Hutan, 4(4), 15–21.

Primandari, S. R. P., Islam, A. K. M. A., Yaakob, Z., & Chakrabarty, S. (2018). Jatropha curcas L. biomass waste and its utilization. Dalam Advances in Biofuels and Bioenergy (273–282). doi: 10.5772/intechopen.72803.

Rehman, M. Z. ur, Khalid, H., Akmal, F., Ali, S., Rizwan, M., Qayyum, M. F., … Azhar, M. (2017). Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environmental Pollution, 227, 560–568. doi: 10.1016/j.envpol.2017.05. 003.

Sánchez, Ó. J., Ospina, D. A., & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69(26), 136–153. doi: 10.1016/ j.wasman.2017.08.012.

Seehausen, M., Gale, N., Dranga, S., Hudson, V., Liu, N., Michener, J., … Thomas, S. (2017). Is there a positive synergistic effect of biochar and compost soil amendments on plant growth and physiological performance? Agronomy, 7(1), 13. doi: 10.3390/agronomy7010013.

Selvakumar, G., Yi, P. H., Lee, S. E., Han, S. G., & Chung, B. N. (2018). Hairy vetch, compost and chemical fertilizer management effects on red pepper yield, quality, and soil microbial population. Horticulture Environment and Biotechnology, 59(5), 607–614. doi: 10.1007/ s13580-018-0078-z.

Sigmund, G., Poyntner, C., Piñar, G., Kah, M., & Hofmann, T. (2018). Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. Journal of Hazardous Materials, 345, 107–113. doi: 10.1016/j.jhazmat.2017.11.010.

Simarmata, T., Hersanti, Turmuktini, T., Fitriatin, B. N., Setiawati, M. R., & Purwanto. (2016). Application of bioameliorant and biofertilizers to increase the soil health and rice productivity. HAYATI Journal of Biosciences, 23(4), 181–184. doi: 10.1016/j.hjb.2017.01.001.

Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., … Nichols, K. A. (2012). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environment Quality, 41(4), 973. doi: 10.2134/jeq2011.0069.

Sudrajat, R. (1992). Aneka manfaat penggunaan kompos cair (larutan draco) hasil proses fermentasi anaerobik dengan bahan baku sampah kota. Jurnal Penelitian Hasil Hutan, 10(3), 71–76.

Sun, D., Lan, Y., Xu, E. G., Meng, J., & Chen, W. (2016). Biochar as a novel niche for culturing microbial communities in composting. Waste Management, 54, 93–100. doi: 10.1016/j.wasman. 2016.05.004.

Weijia, S., Yaning, L., Junyu, L., & Xiangfei, M. (2017). Use of Ginkgo biloba leaf compost for promoting soil properties and rooting of New Guinea impatiens cuttings. Biological Agriculture and Horticulture, 33(4), 258–268. doi: 10.1080/ 01448765.2017.1339639.

Winarni, I., & Waluyo, T. K. (2010). Aplikasi arang kompos bioaktif pada budidaya nilam terhadap kualitas produk minyak nilam. Jurnal Penelitian Hasil Hutan, 28(12), 406–414.

Zainul, A., Koyro, H.-W., Huchzermeyer, B., Gul, B., & Khan, M. A. (2017). Impact of a biochar or a compost-biochar mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere, (August). doi: 10.1016/s1002-0160(17)60362-x.

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.