KEMUNGKINAN PENGGUNAAN NANO KARBON DARI LIGNOSELULOSA SEBAGAI BIOSENSOR

Main Article Content

Gustan Pari
Adi Santoso
Djeni Hendra
Buchari
Akhirudin Maddu
Mamat Rachmat
Muji Harsini
Bunga Ayu Safitri
Teddi Heriyanto
Saptadi Darmawan

Abstract

In the forest products field, the nano technology that can be developed is among others nano carbon derived from lignocellulosic stuffs. In relevant, this paper observes information and technology on the charcoal processing from lignocellulosic stuffs into nano carbon. The lignocellulosic stuffs used in this research consisted of teak wood, further carbonized into charcoal at 400-500 C using drum kiln and then purified by re-carbonizing it at 800 C for 60 minutes by using steam and sodium hydroxide (KOH) 15% as activation agent. Prior to purification, the charcoal sustained the doping (intercalation) process with Nicel and re-carbonize again at 900 C for 60 minutes. The qualities and structure of all the resulting carbon were evaluated using nano scale device pyrolysis-gas chromatography mass spectrophotomtry (PyGCMS), scanning electron microscope-energy disverse spectrophotometry (SEM-EDS and X-ray diffraction (XRD), and examined as well of their dielectric characteristics. Result show charcoal was examined of its physical and chemical properties. Manufacture of biosensor by using molecularly imprinted polimer (MIP) system based on carbon paste and optimizing. Results show that nano carbon from lignocellulose can be made for biosensor with MIP system. Optimized formulation were mixed with15% MIP, 45% carbon and 40% parafine with nernst factor of 49 mV/decade and limit detection of 1.02x10-6 M at pH4.

Article Details

How to Cite
Gustan Pari, Adi Santoso, Djeni Hendra, Buchari, Akhirudin Maddu, Mamat Rachmat, … Saptadi Darmawan. (2016). KEMUNGKINAN PENGGUNAAN NANO KARBON DARI LIGNOSELULOSA SEBAGAI BIOSENSOR. Jurnal Penelitian Hasil Hutan, 34(2), 111–126. https://doi.org/10.20886/jphh.2016.34.2.111-125
Section
Articles

References

Barsukov, (2003). New carbon based materias for electrochemical energy storage system. Netherland: Springer.

Freitag, R., (2002), Modern advances in chromatography. Germany: Springer.

Komiyama, M., Takeuchi, T., Mukawa, T., & Asanuma, H., (2003). Molecular imprinting : from fundamentals to applications, Weinheim: Wiley-VCH.

Odian, G., (2004), Principles of polimerization, 4th edition. Canada: John Wiley & Son.

Pari, G. (2004). Kajian struktur arang aktif dari serbuk gergaji kayu sebagai adsorben emisi formaldehida kayu lapis. [Disertasi]. Sekolah Pascasarjana IPB, Bogor.

Pari, G., (2010), Peran dan masa depan arang yang prospektif untuk Indonesia, Jakarta. Kementerian Kehutanan, Badan Litbang Kehutanan, Puslitbang Hasil Hutan.

Pari, G., Santoso, A., Hendra, D.J., Buchari., Maddu, A., Rachmat, R., Harsini, M., Herianto, T. & Darmawan, S. (2013). Karakterisasi struktur nano karbon dari lignoselulosa. Jurnal Penelitian Hasil Hutan, 31 (1), 75-91.

Scholz, F., (2002), Electroanalytical methods: Guide to experiments and applications. Berlin: Springer.

Sellergren, B., (2001), Molecularly imprinted polymer man-made mimics of antibodies and their application in analytical chemistry. Amsterdam: Elsevier.

Standar Nasional Indonesia (SNI). (1995) Arang aktif teknis (SNI 06-3730-1995). Badan Standarisasi Nasional.

Suzuki, K., Yamada, T. & Suzuki, T. (2007). Nickel-catalyzed carbonization of wood for co-production of functional carbon and fluid fuel: Production of dual functional nano-carbon by two steps carbonization. Journalof the Society of Materials Science, 56 (4), 339-344.

Yasuda, E., Inagaki, M., & Kaneko, K., (2003), Carbon alloys: Novel concepts to develop carbon science and technology. Kidlington: Elsevier Science Ltd.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.