VIOLACEIN: IT'S ANTICANCER PROPERTIES
Main Article Content
Abstract
Violacein is a bacterial secondary product with various bioactivities, including anticancer activities. This narrative review aimed to evaluate anticancer potentials based on its modes of action, either at cellular, subcellular, or molecular levels or in tumour microenvironment. At cellular level, violacein can inhibit cancer cell proliferation, arrest cell cycle, induce apoptosis, autophagy, and cell differentiation. At subcellular level, violacein can modulate processes in mitochondria. At molecular level, violacein can generate reactive oxygen species, attenuate inflammation, repair oncogenes, upregulate suppression genes, inhibit or activate several cancer vital enzymes, and control various signalling pathways. Violacein indirectly influences communication between cancer cells and their tumour microenvironment by inducing apoptosis and autophagy and inhibiting metalloproteinases and angiogenesis. Violacein inactivates several signalling pathways, including MAPK, Akt/NF-kB, JAK2/STAT3, and TGFβ, which are essential for cancer cell development. Violacein is a promising anticancer drug candidate with broad coverage of various cancer diseases and diverse modes of action.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Aires-Lopes B, Justo GZ, Cordeiro HG, Durán N, Azevedo-Martins JM, and Ferreira Halder CV (2024) Violacein improves vemurafenib response in melanoma spheroids. Natural Product Research. doi:https://doi.org/10.1080/14786419.2023.2244134
Al-malky HS, Al Harthi SE, and Osman A-MM (2020) Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance. Journal of Oncology Pharmacy Practice 26(2): 434-444. doi:10.1177/1078155219877931
Alemasova EE, and Lavrik OI (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 47(8): 3811-3827. doi:https://doi.org/10.1093/nar/gkz120
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, et al. (2023) TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 947: 175678. doi:https://doi.org/10.1016/j.ejphar.2023.175678
Alshatwi AA, Subash-Babu P, and Antonisamy P (2016) Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Exp Toxicol Pathol 68(1): 89-97. doi:https://doi.org/10.1016/j.etp.2015.10.002
Amaravadi RK, Kimmelman AC, and Debnath J (2019) Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov 9(9): 1167-1181. doi:https://doi.org/10.1158/2159-8290.Cd-19-0292
Ascenzi F, De Vitis C, Maugeri-Saccà M, Napoli C, Ciliberto G, and Mancini R (2021) SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res 40(1): 265. doi:https://doi.org/10.1186/s13046-021-02067-6
Assenat E, Gerbal-chaloin S, Maurel P, Vilarem MJ, and Pascussi JM (2006) Is nuclear factor kappa-B the missing link between inflammation, cancer and alteration in hepatic drug metabolism in patients with cancer? Eur J Cancer 42(6): 785-792. doi:https://doi.org/10.1016/j.ejca.2006.01.005
Bachmann M, Pontarin G, and Szabo I (2019) The Contribution of Mitochondrial Ion Channels to Cancer Development and Progression. Cell Physiol Biochem 53(S1): 63-78. doi:https://doi.org/10.33594/000000198
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, et al. (2020) Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 21(18). doi:https://doi.org/10.3390/ijms21186635
Bonomi M, Patsias A, Posner M, and Sikora A (2014) The role of inflammation in head and neck cancer. Adv Exp Med Biol 816: 107-127. doi:https://doi.org/10.1007/978-3-0348-0837-8_5
Borrello MG, Degl'Innocenti D, and Pierotti MA (2008) Inflammation and cancer: the oncogene-driven connection. Cancer Lett 267(2): 262-270. doi:https://doi.org/10.1016/j.canlet.2008.03.060
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, and Jemal A (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 74(3): 229-263. doi:https://doi.org/10.3322/caac.21834
Bromberg N, Dreyfuss JL, Regatieri CV, Palladino MV, Durán N, Nader HB, Haun M, and Justo GZ (2010) Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chem Biol Interact 186(1): 43-52. doi:https://doi.com/10.1016/j.cbi.2010.04.016
Burke PJ (2017) Mitochondria, Bioenergetics and Apoptosis in Cancer. Trends Cancer 3(12): 857-870. doi:https://doi.org.10.1016/j.trecan.2017.10.006
Cao W, Chen W, Sun S, Guo P, Song J, and Tian C (2007) Investigating the antioxidant mechanism of violacein by density functional theory method. Journal of Molecular Structure: THEOCHEM 817(1): 1-4. doi:https://doi.org/10.1016/j.theochem.2007.04.022
Chiarugi P, Taddei ML, Schiavone N, Papucci L, Giannoni E, Fiaschi T, Capaccioli S, et al. (2004) LMW-PTP is a positive regulator of tumor onset and growth. Oncogene 23(22): 3905-3914. doi:https://doi.org/10.1038/sj.onc.1207508
Choi SY, Lim S, Cho G, Kwon J, Mun W, Im H, and Mitchell RJ (2020) Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles. Environ Microbiol 22(2): 705-713. doi:https://doi.org/10.1111/1462-2920.14888
Choi SY, Lim S, Yoon KH, Lee JI, and Mitchell RJ (2021) Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. J Biol Eng 15(1): 10. doi:https://doi.org/10.1186/s13036-021-00262-9
Choi SY, Yoon K-h, Lee JI, and Mitchell RJ (2015) Violacein: Properties and production of a versatile bacterial pigment. BioMed Research International 2015(1): 465056. doi:https://doi.org/10.1155/2015/465056
Chorawala M, Oza P, and Shah G (2012) Mechanisms of anticancer drugs resistance: an overview. Int J Pharm Sci Drug Res 4(1): 1-9.
Chung C, Seo W, Silwal P, and Jo EK (2020) Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol 13(1): 100. doi:https://doi.org/10.1186/s13045-020-00936-9
Dahlem C, Chanda S, Hemmer J, Schymik HS, Kohlstedt M, Wittmann C, and Kiemer AK (2022) Characterization of Anti-Cancer Activities of Violacein: Actions on Tumor Cells and the Tumor Microenvironment. Front Oncol 12: 872223. doi:https://doi.org/10.3389/fonc.2022.872223
de Carvalho DD, Costa FT, Duran N, and Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol In Vitro 20(8): 1514-1521. doi:https://doi.org/10.1016/j.tiv.2006.06.007
de Souza Oliveira PF, Faria AVS, Clerici SP, Akagi EM, Carvalho HF, Justo GZ, Durán N, and Ferreira-Halder CV (2022) Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition. J Cell Biochem 123(7): 1247-1258. doi:10.1002/jcb.30295
Debnath J, Gammoh N, and Ryan KM (2023) Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol 24(8): 560-575. doi:https://doi.org/10.1038/s41580-023-00585-z
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, et al. (2021a) Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 37(9): 151. doi:https://doi.org/10.1007/s11274-021-03120-4
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, et al. (2021b) Multi-target drug with potential applications: violacein in the spotlight. World Journal of Microbiology and Biotechnology 37(9): 151. doi:10.1007/s11274-021-03120-4
Faria AVS, Clerici SP, de Souza Oliveira PF, Queiroz KCS, Peppelenbosch MP, and Ferreira-Halder CV (2020) LMWPTP modulates the antioxidant response and autophagy process in human chronic myeloid leukemia cells. Mol Cell Biochem 466(1-2): 83-89. doi:https://doi.org/10.1007/s11010-020-03690-1
Faria AVS, Fonseca EMB, Cordeiro HG, Clerici SP, and Ferreira-Halder CV (2021) Low molecular weight protein tyrosine phosphatase as signaling hub of cancer hallmarks. Cell Mol Life Sci 78(4): 1263-1273. doi:https://doi.org/10.1007/s00018-020-03657-x
Faria AVS, Fonseca EMB, Fernandes-Oliveira PS, de Lima TI, Clerici SP, Justo GZ, Silveira LR, et al. (2022) Violacein switches off low molecular weight tyrosine phosphatase and rewires mitochondria in colorectal cancer cells. Bioorg Chem 127: 106000. doi:https://doi.org/10.1016/j.bioorg.2022.106000
Fears LS, Curtis ME, Johnson TL, and Fentress HM (2019) Pharmacological Properties of Chromobacterium violaceum Violacein at the Human Serotonin 2C Receptor. EC Pharmacol Toxicol 30(Suppl 1): 103-111.
Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, and Peppelenbosch MP (2004) Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104(5): 1459-1464. doi:10.1182/blood-2004-02-0594
Fhu CW, and Ali A (2020) Fatty Acid Synthase: An Emerging Target in Cancer. Molecules 25(17). doi:https://doi.org/10.3390/molecules25173935
Fulghieri P, Stivala LA, and Sottile V (2021) Modulating cell differentiation in cancer models. Biochem Soc Trans 49(4): 1803-1816. doi:https://doi.org/10.1042/bst20210230
Gonçalves PR, Rocha-Brito KJ, Fernandes MR, Abrantes JL, Durán N, and Ferreira-Halder CV (2016) Violacein induces death of RAS-mutated metastatic melanoma by impairing autophagy process. Tumour Biol 37(10): 14049-14058. doi:10.1007/s13277-016-5265-x
Günenc AN, Graf B, Stark H, and Chari A (2022) Fatty Acid Synthase: Structure, Function, and Regulation. Subcell Biochem 99: 1-33. doi:https://doi.org/10.1007/978-3-031-00793-4_1
Hashimi SM, Xu T, and Wei MQ (2015) Violacein anticancer activity is enhanced under hypoxia. Oncol Rep 33(4): 1731-1736. doi:https://doi.org/10.3892/or.2015.3781
He RJ, Yu ZH, Zhang RY, and Zhang ZY (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35(10): 1227-1246. doi:https://doi.org/10.1038/aps.2014.80
Hoekstra E, Kodach LL, Das AM, Ruela-de-Sousa RR, Ferreira CV, Hardwick JC, van der Woude CJ, et al. (2015) Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget 6(10): 8300-8312. doi:https://doi.org/10.18632/oncotarget.3224
Jäkel H, Peschel I, Kunze C, Weinl C, and Hengst L (2012) Regulation of p27 (Kip1) by mitogen-induced tyrosine phosphorylation. Cell Cycle 11(10): 1910-1917. doi:https://doi.org/10.4161/cc.19957
Jędruszczak A, Węgrzyn-Bąk M, Budzyńska-Nosal R, Maciejewski M, and Marczewski K (2019) Sepsis caused by Chromobacterium violaceum - probably the first case in Europe, or Macbeth read anew. Ann Agric Environ Med 26(3): 508-510. doi:https://doi.org/10.26444/aaem/99295
Ji Q, Liu X, Han Z, Zhou L, Sui H, Yan L, Jiang H, et al. (2015) Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer 15: 97. doi:https://doi.org/10.1186/s12885-015-1119-y
Joyce C, Rayi A, and Kasi A. (2024). Tumor-Suppressor Genes. In: StatPearls Publishing.
Kawasaki T, and Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5: 461. doi:https://doi.org/10.3389/fimmu.2014.00461
Kido M, Idogaki H, Nishikawa K, and Omasa T (2021) Violacein improves recombinant IgG production by controlling the cell cycle of Chinese hamster ovary cells. Cytotechnology 73(3): 319-332. doi:https://doi.org/10.1007/s10616-020-00434-3
Kim MJ, Min Y, Kwon J, Son J, Im JS, Shin J, and Lee KY (2019) p62 Negatively Regulates TLR4 Signaling via Functional Regulation of the TRAF6-ECSIT Complex. Immune Netw 19(3): e16. doi:https://doi.org/10.4110/in.2019.19.e16
Kim YC, and Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1): 25-32. doi:https://doi.org/10.1172/jci73939
Kim YJ, Yuk N, Shin HJ, and Jung HJ (2021) The Natural Pigment Violacein Potentially Suppresses the Proliferation and Stemness of Hepatocellular Carcinoma Cells In Vitro. Int J Mol Sci 22(19). doi:10.3390/ijms221910731
Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, and Hardwick JC (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27(3): 508-516. doi:https://doi.org/10.1093/carcin/bgi307
Konzen M, De Marco D, Cordova CAS, Vieira TO, Antônio RV, and Creczynski-Pasa TB (2006) Antioxidant properties of violacein: Possible relation on its biological function. Bioorganic & Medicinal Chemistry 14(24): 8307-8313. doi:https://doi.org/10.1016/j.bmc.2006.09.013
Leal AM, de Queiroz JD, de Medeiros SR, Lima TK, and Agnez-Lima LF (2015) Violacein induces cell death by triggering mitochondrial membrane hyperpolarization in vitro. BMC Microbiol 15: 115. doi:https://doi.org/10.1186/s12866-015-0452-2
Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, and Kong AN (2013) Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 137(2): 153-171. doi:https://doi.org/10.1016/j.pharmthera.2012.09.008
Li W, Guo Y, Zhang C, Wu R, Yang AY, Gaspar J, and Kong AN (2016) Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. Chem Res Toxicol 29(12): 2071-2095. doi:https://doi.org/10.1021/acs.chemrestox.6b00413
Luo M-L, Huang W, Zhu H-P, Peng C, Zhao Q, and Han B (2022) Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomedicine & Pharmacotherapy 149: 112827. doi:https://doi.org/10.1016/j.biopha.2022.112827
Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, Di Stefano E, et al. (2015) Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour Biol 37(3): 3705-3717. doi:https://doi.org/10.1007/s13277-015-4207-3
Megino-Luque C, and Bravo-Cordero JJ (2023) Metastasis suppressor genes and their role in the tumor microenvironment. Cancer Metastasis Rev 42(4): 1147-1154. doi:https://doi.org/10.1007/s10555-023-10155-6
Mehta T, Vercruysse K, Johnson T, Ejiofor AO, Myles E, and Quick QA (2015) Violacein induces p44/42 mitogen-activated protein kinase-mediated solid tumor cell death and inhibits tumor cell migration. Mol Med Rep 12(1): 1443-1448. doi:10.3892/mmr.2015.3525
Melo PS, De Azevedo MM, Frungillo L, Anazetti MC, Marcato PD, and Duran N (2009) Nanocytotoxicity: violacein and violacein-loaded poly (D, L-lactide-co-glycolide) nanoparticles acting on human leukemic cells. J Biomed Nanotechnol 5(2): 192-201. doi:https://doi.org/10.1166/jbn.2009.1018
Melo PS, Justo GZ, de Azevedo MB, Durán N, and Haun M (2003) Violacein and its beta-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology 186(3): 217-225. doi:https://doi.org/10.1016/s0300-483x(02)00751-5
Menezes CB, Silva BP, Sousa IM, Ruiz AL, Spindola HM, Cabral E, Eberlin MN, et al. (2013) In vitro and in vivo antitumor activity of crude extracts obtained from Brazilian Chromobacterium sp isolates. Braz J Med Biol Res 46(1): 65-70. doi:https://doi.org/10.1590/s0100-879x2012007500167
Milosevic E, Stanisavljevic N, Boskovic S, Stamenkovic N, Novkovic M, Bavelloni A, Cenni V, et al. (2023) Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. J Cancer Res Clin Oncol 149(13): 10975-10987. doi:https://doi.org/10.1007/s00432-023-04930-9
Mohan CD, Rangappa S, Nayak SC, Jadimurthy R, Wang L, Sethi G, Garg M, and Rangappa KS (2022) Bacteria as a treasure house of secondary metabolites with anticancer potential. Semin Cancer Biol 86: 998-1013. doi:https://doi.org/10.1016/j.semcancer.2021.05.006
Mojib N, Nasti TH, Andersen DT, Attigada VR, Hoover RB, Yusuf N, and Bej AK (2011) The antiproliferative function of violacein-like purple violet pigment (PVP) from an Antarctic Janthinobacterium sp. Ant5-2 in UV-induced 2237 fibrosarcoma. Int J Dermatol 50(10): 1223-1233. doi:https://doi.org/10.1111/j.1365-4632.2010.04825.x
Motofei IG (2022) Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 86(Pt 3): 600-615. doi:https://doi.org/10.1016/j.semcancer.2021.10.003
Neroni B, Zingaropoli MA, Radocchia G, Ciardi MR, Mosca L, Pantanella F, and Schippa S (2022) Evaluation of the anti-proliferative activity of violacein, a natural pigment of bacterial origin, in urinary bladder cancer cell lines. Oncol Lett 23(4): 132. doi:https://doi.org/10.3892/ol.2022.13252
Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, et al. (2018) The Akt pathway in oncology therapy and beyond (Review). Int J Oncol 53(6): 2319-2331. doi:https://doi.org/10.3892/ijo.2018.4597
Paredes-Gamero EJ, Nogueira-Pedro A, Miranda A, and Justo GZ (2013) Hematopoietic modulators as potential agents for the treatment of leukemia. Front Biosci (Elite Ed) 5(1): 130-140. doi:10.2741/e602
Pillai P, Surenya RS, Nair SV, and Lakshmanan VK (2015) Cancer Kinases and its Novel Inhibitors: Past, Present and Future Challenges. Curr Drug Targets 16(11): 1233-1245. doi:https://doi.org/10.2174/1389450116666150416120108
Platt D, Amara S, Mehta T, Vercuyssee K, Myles EL, Johnson T, and Tiriveedhi V (2014) Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem Biophys Res Commun 455(1-2): 107-112. doi:https://doi.org/10.1016/j.bbrc.2014.10.124
Prasad KN (2016) Simultaneous Activation of Nrf2 and Elevation of Dietary and Endogenous Antioxidant Chemicals for Cancer Prevention in Humans. J Am Coll Nutr 35(2): 175-184. doi:https://doi.org/10.1080/07315724.2014.1003419
Prerna K, and Dubey VK (2022) Beclin1-mediated interplay between autophagy and apoptosis: New understanding. Int J Biol Macromol 204: 258-273. doi:10.1016/j.ijbiomac.2022.02.005
Qin S, and Hou DX (2016) Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res 60(8): 1731-1755. doi:https://doi.org/10.1002/mnfr.201501017
Queiroz KC, Milani R, Ruela-de-Sousa RR, Fuhler GM, Justo GZ, Zambuzzi WF, Duran N, et al. (2012) Violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and Golgi apparatus collapse. PLoS One 7(10): e45362. doi:10.1371/journal.pone.0045362
Radak M, and Fallahi H (2024) Cell-cell communication in stem cells and cancer: Alone but in touch. Fundam Clin Pharmacol 38(3): 479-488. doi:https://doi.org/10.1111/fcp.12982
Rajawat J, Shukla N, and Mishra DP (2017) Therapeutic Targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in Cancer: Current Developments, Therapeutic Strategies, and Future Opportunities. Med Res Rev 37(6): 1461-1491. doi:https://doi.org/10.1002/med.21442
Raugei G, Ramponi G, and Chiarugi P (2002) Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 59(6): 941-949. doi:https://doi.org/10.1007/s00018-002-8481-z
Riley JS, and Bock FJ (2022) Voices from beyond the grave: The impact of apoptosis on the microenvironment. Biochim Biophys Acta Mol Cell Res 1869(11): 119341. doi:10.1016/j.bbamcr.2022.119341
Rivero Berti I, Rodenak-Kladniew B, Onaindia C, Adam CG, Islan GA, Durán N, and Castro GR (2020) Assessment of in vitro cytotoxicity of imidazole ionic liquids and inclusion in targeted drug carriers containing violacein. RSC Adv 10(49): 29336-29346. doi:https://doi.org/10.1039/d0ra05101b
Ruiz B, Adán C, Angela F, Yolanda G-H, Alba R, Mauricio S, Diana R, et al. (2010) Production of microbial secondary metabolites: Regulation by the carbon source. Crit Rev Microbiol 36(2): 146-167. doi:10.3109/10408410903489576
Rusin M (2024) The p53 protein - not only the guardian of the genome. Postepy Biochem 70(1): 71-87. doi:https://doi.org/10.18388/pb.2021_518
Rustin P, and Kroemer G (2007) Mitochondria and cancer. Ernst Schering Found Symp Proc(4): 1-21. doi:https://doi.org/10.1007/2789_2008_086
Saraiva VS, Marshall JC, Cools-Lartigue J, and Burnier MN, Jr. (2004) Cytotoxic effects of violacein in human uveal melanoma cell lines. Melanoma Res 14(5): 421-424. doi:https://doi.org/10.1097/00008390-200410000-00014
Singh S, Gouri V, and Samant M (2023) TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 40(11): 335. doi:https://doi.org/10.1007/s12032-023-02204-5
Solé R, and Aguadé-Gorgorió G (2021) The ecology of cancer differentiation therapy. J Theor Biol 511: 110552. doi:https://doi.org/10.1016/j.jtbi.2020.110552
Su Z, Yang Z, Xu Y, Chen Y, and Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14: 48. doi:10.1186/s12943-015-0321-5
Szewczyk-Roszczenko O, and Barlev NA (2023) The Role of p53 in Nanoparticle-Based Therapy for Cancer. Cells 12(24). doi:https://doi.org/10.3390/cells12242803
Vaishnav P, and Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29(2): 223-229. doi:10.1016/j.biotechadv.2010.11.006
Vander Heiden MG, Cantley LC, and Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930): 1029-1033. doi:https://doi.org/10.1126/science.1160809
Venegas FA, Köllisch G, Mark K, Diederich WE, Kaufmann A, Bauer S, Chavarría M, et al. (2019) The Bacterial Product Violacein Exerts an Immunostimulatory Effect Via TLR8. Sci Rep 9(1): 13661. doi:https://doi.org/10.1038/s41598-019-50038-x
Venkatramanan M, and Nalini E (2024) Regulation of virulence in Chromobacterium violaceum and strategies to combat it. Front Microbiol 15: 1303595. doi:https://doi.org/10.3389/fmicb.2024.1303595
Verinaud L, Lopes SC, Prado IC, Zanucoli F, Alves da Costa T, Di Gangi R, Issayama LK, et al. (2015) Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells. PLoS One 10(5): e0125409. doi:https://doi.org/10.1371/journal.pone.0125409
Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, et al. (2021) The double-edged roles of ROS in cancer prevention and therapy. Theranostics 11(10): 4839-4857. doi:https://doi.org/10.7150/thno.56747
Xu HD, and Qin ZH (2019) Beclin 1, Bcl-2 and Autophagy. Adv Exp Med Biol 1206: 109-126. doi:https://doi.org/10.1007/978-981-15-0602-4_5
Yaacoub K, Pedeux R, Tarte K, and Guillaudeux T (2016) Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer Lett 378(2): 150-159. doi:10.1016/j.canlet.2016.05.012
Yan RL, and Chen RH (2022) Autophagy and cancer metabolism-The two-way interplay. IUBMB Life 74(4): 281-295. doi:https://doi.org/10.1002/iub.2569
Yan SF, King FJ, Zhou Y, Warmuth M, and Xia G (2006) Profiling the kinome for drug discovery. Drug Discov Today Technol 3(3): 269-276. doi:https://doi.org/10.1016/j.ddtec.2006.09.012
Yang X, Zhuang J, Song W, Shen W, Wu W, Shen H, and Han S (2023) Mitochondria-associated endoplasmic reticulum membrane: Overview and inextricable link with cancer. J Cell Mol Med 27(7): 906-919. doi:https://doi.org/10.1111/jcmm.17696
Yogini K, Waman M, and Rajashree P (2022) Violacein: A Promising bacterial secondary metabolite. Research Journal of Chemistry and Environment 26(6): 13.
Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, and Miri SR (2021) The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes & Diseases 8(3): 287-297. doi:https://doi.org/10.1016/j.gendis.2020.06.005