VIOLACEIN: IT'S ANTICANCER PROPERTIES

Main Article Content

Adit Widodo Santoso
Adelina Simamora
Margretha Margretha
Kris Herawan Timotius

Abstract

Violacein is a bacterial secondary product with various bioactivities, including anticancer activities. This narrative review aimed to evaluate anticancer potentials based on its modes of action, either at cellular, subcellular, or molecular levels or in tumour microenvironment. At cellular level, violacein can inhibit cancer cell proliferation, arrest cell cycle, induce apoptosis, autophagy, and cell differentiation. At subcellular level, violacein can modulate processes in mitochondria. At molecular level, violacein can generate reactive oxygen species, attenuate inflammation, repair oncogenes, upregulate suppression genes, inhibit or activate several cancer vital enzymes, and control various signalling pathways. Violacein indirectly influences communication between cancer cells and their tumour microenvironment by inducing apoptosis and autophagy and inhibiting metalloproteinases and angiogenesis. Violacein inactivates several signalling pathways, including MAPK, Akt/NF-kB, JAK2/STAT3, and TGFβ, which are essential for cancer cell development. Violacein is a promising anticancer drug candidate with broad coverage of various cancer diseases and diverse modes of action.

Article Details

How to Cite
Santoso, A. W., Simamora, A., Margretha, M., & Timotius, K. H. (2025). VIOLACEIN: IT’S ANTICANCER PROPERTIES. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 12(2), 426–449. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/11333
Section
Articles
Author Biographies

Adelina Simamora, Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta, Indonesia

Associate Professor

Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University

Kris Herawan Timotius, Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta, Indonesia

Professor

Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University

References

Aires-Lopes B, Justo GZ, Cordeiro HG, Durán N, Azevedo-Martins JM, and Ferreira Halder CV (2024) Violacein improves vemurafenib response in melanoma spheroids. Natural Product Research. doi:https://doi.org/10.1080/14786419.2023.2244134

Al-malky HS, Al Harthi SE, and Osman A-MM (2020) Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance. Journal of Oncology Pharmacy Practice 26(2): 434-444. doi:10.1177/1078155219877931

Alemasova EE, and Lavrik OI (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 47(8): 3811-3827. doi:https://doi.org/10.1093/nar/gkz120

Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, et al. (2023) TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 947: 175678. doi:https://doi.org/10.1016/j.ejphar.2023.175678

Alshatwi AA, Subash-Babu P, and Antonisamy P (2016) Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Exp Toxicol Pathol 68(1): 89-97. doi:https://doi.org/10.1016/j.etp.2015.10.002

Amaravadi RK, Kimmelman AC, and Debnath J (2019) Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov 9(9): 1167-1181. doi:https://doi.org/10.1158/2159-8290.Cd-19-0292

Ascenzi F, De Vitis C, Maugeri-Saccà M, Napoli C, Ciliberto G, and Mancini R (2021) SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res 40(1): 265. doi:https://doi.org/10.1186/s13046-021-02067-6

Assenat E, Gerbal-chaloin S, Maurel P, Vilarem MJ, and Pascussi JM (2006) Is nuclear factor kappa-B the missing link between inflammation, cancer and alteration in hepatic drug metabolism in patients with cancer? Eur J Cancer 42(6): 785-792. doi:https://doi.org/10.1016/j.ejca.2006.01.005

Bachmann M, Pontarin G, and Szabo I (2019) The Contribution of Mitochondrial Ion Channels to Cancer Development and Progression. Cell Physiol Biochem 53(S1): 63-78. doi:https://doi.org/10.33594/000000198

Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, et al. (2020) Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 21(18). doi:https://doi.org/10.3390/ijms21186635

Bonomi M, Patsias A, Posner M, and Sikora A (2014) The role of inflammation in head and neck cancer. Adv Exp Med Biol 816: 107-127. doi:https://doi.org/10.1007/978-3-0348-0837-8_5

Borrello MG, Degl'Innocenti D, and Pierotti MA (2008) Inflammation and cancer: the oncogene-driven connection. Cancer Lett 267(2): 262-270. doi:https://doi.org/10.1016/j.canlet.2008.03.060

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, and Jemal A (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 74(3): 229-263. doi:https://doi.org/10.3322/caac.21834

Bromberg N, Dreyfuss JL, Regatieri CV, Palladino MV, Durán N, Nader HB, Haun M, and Justo GZ (2010) Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chem Biol Interact 186(1): 43-52. doi:https://doi.com/10.1016/j.cbi.2010.04.016

Burke PJ (2017) Mitochondria, Bioenergetics and Apoptosis in Cancer. Trends Cancer 3(12): 857-870. doi:https://doi.org.10.1016/j.trecan.2017.10.006

Cao W, Chen W, Sun S, Guo P, Song J, and Tian C (2007) Investigating the antioxidant mechanism of violacein by density functional theory method. Journal of Molecular Structure: THEOCHEM 817(1): 1-4. doi:https://doi.org/10.1016/j.theochem.2007.04.022

Chiarugi P, Taddei ML, Schiavone N, Papucci L, Giannoni E, Fiaschi T, Capaccioli S, et al. (2004) LMW-PTP is a positive regulator of tumor onset and growth. Oncogene 23(22): 3905-3914. doi:https://doi.org/10.1038/sj.onc.1207508

Choi SY, Lim S, Cho G, Kwon J, Mun W, Im H, and Mitchell RJ (2020) Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles. Environ Microbiol 22(2): 705-713. doi:https://doi.org/10.1111/1462-2920.14888

Choi SY, Lim S, Yoon KH, Lee JI, and Mitchell RJ (2021) Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. J Biol Eng 15(1): 10. doi:https://doi.org/10.1186/s13036-021-00262-9

Choi SY, Yoon K-h, Lee JI, and Mitchell RJ (2015) Violacein: Properties and production of a versatile bacterial pigment. BioMed Research International 2015(1): 465056. doi:https://doi.org/10.1155/2015/465056

Chorawala M, Oza P, and Shah G (2012) Mechanisms of anticancer drugs resistance: an overview. Int J Pharm Sci Drug Res 4(1): 1-9.

Chung C, Seo W, Silwal P, and Jo EK (2020) Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol 13(1): 100. doi:https://doi.org/10.1186/s13045-020-00936-9

Dahlem C, Chanda S, Hemmer J, Schymik HS, Kohlstedt M, Wittmann C, and Kiemer AK (2022) Characterization of Anti-Cancer Activities of Violacein: Actions on Tumor Cells and the Tumor Microenvironment. Front Oncol 12: 872223. doi:https://doi.org/10.3389/fonc.2022.872223

de Carvalho DD, Costa FT, Duran N, and Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol In Vitro 20(8): 1514-1521. doi:https://doi.org/10.1016/j.tiv.2006.06.007

de Souza Oliveira PF, Faria AVS, Clerici SP, Akagi EM, Carvalho HF, Justo GZ, Durán N, and Ferreira-Halder CV (2022) Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition. J Cell Biochem 123(7): 1247-1258. doi:10.1002/jcb.30295

Debnath J, Gammoh N, and Ryan KM (2023) Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol 24(8): 560-575. doi:https://doi.org/10.1038/s41580-023-00585-z

Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, et al. (2021a) Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 37(9): 151. doi:https://doi.org/10.1007/s11274-021-03120-4

Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, et al. (2021b) Multi-target drug with potential applications: violacein in the spotlight. World Journal of Microbiology and Biotechnology 37(9): 151. doi:10.1007/s11274-021-03120-4

Faria AVS, Clerici SP, de Souza Oliveira PF, Queiroz KCS, Peppelenbosch MP, and Ferreira-Halder CV (2020) LMWPTP modulates the antioxidant response and autophagy process in human chronic myeloid leukemia cells. Mol Cell Biochem 466(1-2): 83-89. doi:https://doi.org/10.1007/s11010-020-03690-1

Faria AVS, Fonseca EMB, Cordeiro HG, Clerici SP, and Ferreira-Halder CV (2021) Low molecular weight protein tyrosine phosphatase as signaling hub of cancer hallmarks. Cell Mol Life Sci 78(4): 1263-1273. doi:https://doi.org/10.1007/s00018-020-03657-x

Faria AVS, Fonseca EMB, Fernandes-Oliveira PS, de Lima TI, Clerici SP, Justo GZ, Silveira LR, et al. (2022) Violacein switches off low molecular weight tyrosine phosphatase and rewires mitochondria in colorectal cancer cells. Bioorg Chem 127: 106000. doi:https://doi.org/10.1016/j.bioorg.2022.106000

Fears LS, Curtis ME, Johnson TL, and Fentress HM (2019) Pharmacological Properties of Chromobacterium violaceum Violacein at the Human Serotonin 2C Receptor. EC Pharmacol Toxicol 30(Suppl 1): 103-111.

Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, and Peppelenbosch MP (2004) Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104(5): 1459-1464. doi:10.1182/blood-2004-02-0594

Fhu CW, and Ali A (2020) Fatty Acid Synthase: An Emerging Target in Cancer. Molecules 25(17). doi:https://doi.org/10.3390/molecules25173935

Fulghieri P, Stivala LA, and Sottile V (2021) Modulating cell differentiation in cancer models. Biochem Soc Trans 49(4): 1803-1816. doi:https://doi.org/10.1042/bst20210230

Gonçalves PR, Rocha-Brito KJ, Fernandes MR, Abrantes JL, Durán N, and Ferreira-Halder CV (2016) Violacein induces death of RAS-mutated metastatic melanoma by impairing autophagy process. Tumour Biol 37(10): 14049-14058. doi:10.1007/s13277-016-5265-x

Günenc AN, Graf B, Stark H, and Chari A (2022) Fatty Acid Synthase: Structure, Function, and Regulation. Subcell Biochem 99: 1-33. doi:https://doi.org/10.1007/978-3-031-00793-4_1

Hashimi SM, Xu T, and Wei MQ (2015) Violacein anticancer activity is enhanced under hypoxia. Oncol Rep 33(4): 1731-1736. doi:https://doi.org/10.3892/or.2015.3781

He RJ, Yu ZH, Zhang RY, and Zhang ZY (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35(10): 1227-1246. doi:https://doi.org/10.1038/aps.2014.80

Hoekstra E, Kodach LL, Das AM, Ruela-de-Sousa RR, Ferreira CV, Hardwick JC, van der Woude CJ, et al. (2015) Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget 6(10): 8300-8312. doi:https://doi.org/10.18632/oncotarget.3224

Jäkel H, Peschel I, Kunze C, Weinl C, and Hengst L (2012) Regulation of p27 (Kip1) by mitogen-induced tyrosine phosphorylation. Cell Cycle 11(10): 1910-1917. doi:https://doi.org/10.4161/cc.19957

Jędruszczak A, Węgrzyn-Bąk M, Budzyńska-Nosal R, Maciejewski M, and Marczewski K (2019) Sepsis caused by Chromobacterium violaceum - probably the first case in Europe, or Macbeth read anew. Ann Agric Environ Med 26(3): 508-510. doi:https://doi.org/10.26444/aaem/99295

Ji Q, Liu X, Han Z, Zhou L, Sui H, Yan L, Jiang H, et al. (2015) Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer 15: 97. doi:https://doi.org/10.1186/s12885-015-1119-y

Joyce C, Rayi A, and Kasi A. (2024). Tumor-Suppressor Genes. In: StatPearls Publishing.

Kawasaki T, and Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5: 461. doi:https://doi.org/10.3389/fimmu.2014.00461

Kido M, Idogaki H, Nishikawa K, and Omasa T (2021) Violacein improves recombinant IgG production by controlling the cell cycle of Chinese hamster ovary cells. Cytotechnology 73(3): 319-332. doi:https://doi.org/10.1007/s10616-020-00434-3

Kim MJ, Min Y, Kwon J, Son J, Im JS, Shin J, and Lee KY (2019) p62 Negatively Regulates TLR4 Signaling via Functional Regulation of the TRAF6-ECSIT Complex. Immune Netw 19(3): e16. doi:https://doi.org/10.4110/in.2019.19.e16

Kim YC, and Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1): 25-32. doi:https://doi.org/10.1172/jci73939

Kim YJ, Yuk N, Shin HJ, and Jung HJ (2021) The Natural Pigment Violacein Potentially Suppresses the Proliferation and Stemness of Hepatocellular Carcinoma Cells In Vitro. Int J Mol Sci 22(19). doi:10.3390/ijms221910731

Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, and Hardwick JC (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27(3): 508-516. doi:https://doi.org/10.1093/carcin/bgi307

Konzen M, De Marco D, Cordova CAS, Vieira TO, Antônio RV, and Creczynski-Pasa TB (2006) Antioxidant properties of violacein: Possible relation on its biological function. Bioorganic & Medicinal Chemistry 14(24): 8307-8313. doi:https://doi.org/10.1016/j.bmc.2006.09.013

Leal AM, de Queiroz JD, de Medeiros SR, Lima TK, and Agnez-Lima LF (2015) Violacein induces cell death by triggering mitochondrial membrane hyperpolarization in vitro. BMC Microbiol 15: 115. doi:https://doi.org/10.1186/s12866-015-0452-2

Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, and Kong AN (2013) Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 137(2): 153-171. doi:https://doi.org/10.1016/j.pharmthera.2012.09.008

Li W, Guo Y, Zhang C, Wu R, Yang AY, Gaspar J, and Kong AN (2016) Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. Chem Res Toxicol 29(12): 2071-2095. doi:https://doi.org/10.1021/acs.chemrestox.6b00413

Luo M-L, Huang W, Zhu H-P, Peng C, Zhao Q, and Han B (2022) Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomedicine & Pharmacotherapy 149: 112827. doi:https://doi.org/10.1016/j.biopha.2022.112827

Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, Di Stefano E, et al. (2015) Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour Biol 37(3): 3705-3717. doi:https://doi.org/10.1007/s13277-015-4207-3

Megino-Luque C, and Bravo-Cordero JJ (2023) Metastasis suppressor genes and their role in the tumor microenvironment. Cancer Metastasis Rev 42(4): 1147-1154. doi:https://doi.org/10.1007/s10555-023-10155-6

Mehta T, Vercruysse K, Johnson T, Ejiofor AO, Myles E, and Quick QA (2015) Violacein induces p44/42 mitogen-activated protein kinase-mediated solid tumor cell death and inhibits tumor cell migration. Mol Med Rep 12(1): 1443-1448. doi:10.3892/mmr.2015.3525

Melo PS, De Azevedo MM, Frungillo L, Anazetti MC, Marcato PD, and Duran N (2009) Nanocytotoxicity: violacein and violacein-loaded poly (D, L-lactide-co-glycolide) nanoparticles acting on human leukemic cells. J Biomed Nanotechnol 5(2): 192-201. doi:https://doi.org/10.1166/jbn.2009.1018

Melo PS, Justo GZ, de Azevedo MB, Durán N, and Haun M (2003) Violacein and its beta-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology 186(3): 217-225. doi:https://doi.org/10.1016/s0300-483x(02)00751-5

Menezes CB, Silva BP, Sousa IM, Ruiz AL, Spindola HM, Cabral E, Eberlin MN, et al. (2013) In vitro and in vivo antitumor activity of crude extracts obtained from Brazilian Chromobacterium sp isolates. Braz J Med Biol Res 46(1): 65-70. doi:https://doi.org/10.1590/s0100-879x2012007500167

Milosevic E, Stanisavljevic N, Boskovic S, Stamenkovic N, Novkovic M, Bavelloni A, Cenni V, et al. (2023) Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. J Cancer Res Clin Oncol 149(13): 10975-10987. doi:https://doi.org/10.1007/s00432-023-04930-9

Mohan CD, Rangappa S, Nayak SC, Jadimurthy R, Wang L, Sethi G, Garg M, and Rangappa KS (2022) Bacteria as a treasure house of secondary metabolites with anticancer potential. Semin Cancer Biol 86: 998-1013. doi:https://doi.org/10.1016/j.semcancer.2021.05.006

Mojib N, Nasti TH, Andersen DT, Attigada VR, Hoover RB, Yusuf N, and Bej AK (2011) The antiproliferative function of violacein-like purple violet pigment (PVP) from an Antarctic Janthinobacterium sp. Ant5-2 in UV-induced 2237 fibrosarcoma. Int J Dermatol 50(10): 1223-1233. doi:https://doi.org/10.1111/j.1365-4632.2010.04825.x

Motofei IG (2022) Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 86(Pt 3): 600-615. doi:https://doi.org/10.1016/j.semcancer.2021.10.003

Neroni B, Zingaropoli MA, Radocchia G, Ciardi MR, Mosca L, Pantanella F, and Schippa S (2022) Evaluation of the anti-proliferative activity of violacein, a natural pigment of bacterial origin, in urinary bladder cancer cell lines. Oncol Lett 23(4): 132. doi:https://doi.org/10.3892/ol.2022.13252

Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, et al. (2018) The Akt pathway in oncology therapy and beyond (Review). Int J Oncol 53(6): 2319-2331. doi:https://doi.org/10.3892/ijo.2018.4597

Paredes-Gamero EJ, Nogueira-Pedro A, Miranda A, and Justo GZ (2013) Hematopoietic modulators as potential agents for the treatment of leukemia. Front Biosci (Elite Ed) 5(1): 130-140. doi:10.2741/e602

Pillai P, Surenya RS, Nair SV, and Lakshmanan VK (2015) Cancer Kinases and its Novel Inhibitors: Past, Present and Future Challenges. Curr Drug Targets 16(11): 1233-1245. doi:https://doi.org/10.2174/1389450116666150416120108

Platt D, Amara S, Mehta T, Vercuyssee K, Myles EL, Johnson T, and Tiriveedhi V (2014) Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem Biophys Res Commun 455(1-2): 107-112. doi:https://doi.org/10.1016/j.bbrc.2014.10.124

Prasad KN (2016) Simultaneous Activation of Nrf2 and Elevation of Dietary and Endogenous Antioxidant Chemicals for Cancer Prevention in Humans. J Am Coll Nutr 35(2): 175-184. doi:https://doi.org/10.1080/07315724.2014.1003419

Prerna K, and Dubey VK (2022) Beclin1-mediated interplay between autophagy and apoptosis: New understanding. Int J Biol Macromol 204: 258-273. doi:10.1016/j.ijbiomac.2022.02.005

Qin S, and Hou DX (2016) Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res 60(8): 1731-1755. doi:https://doi.org/10.1002/mnfr.201501017

Queiroz KC, Milani R, Ruela-de-Sousa RR, Fuhler GM, Justo GZ, Zambuzzi WF, Duran N, et al. (2012) Violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and Golgi apparatus collapse. PLoS One 7(10): e45362. doi:10.1371/journal.pone.0045362

Radak M, and Fallahi H (2024) Cell-cell communication in stem cells and cancer: Alone but in touch. Fundam Clin Pharmacol 38(3): 479-488. doi:https://doi.org/10.1111/fcp.12982

Rajawat J, Shukla N, and Mishra DP (2017) Therapeutic Targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in Cancer: Current Developments, Therapeutic Strategies, and Future Opportunities. Med Res Rev 37(6): 1461-1491. doi:https://doi.org/10.1002/med.21442

Raugei G, Ramponi G, and Chiarugi P (2002) Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 59(6): 941-949. doi:https://doi.org/10.1007/s00018-002-8481-z

Riley JS, and Bock FJ (2022) Voices from beyond the grave: The impact of apoptosis on the microenvironment. Biochim Biophys Acta Mol Cell Res 1869(11): 119341. doi:10.1016/j.bbamcr.2022.119341

Rivero Berti I, Rodenak-Kladniew B, Onaindia C, Adam CG, Islan GA, Durán N, and Castro GR (2020) Assessment of in vitro cytotoxicity of imidazole ionic liquids and inclusion in targeted drug carriers containing violacein. RSC Adv 10(49): 29336-29346. doi:https://doi.org/10.1039/d0ra05101b

Ruiz B, Adán C, Angela F, Yolanda G-H, Alba R, Mauricio S, Diana R, et al. (2010) Production of microbial secondary metabolites: Regulation by the carbon source. Crit Rev Microbiol 36(2): 146-167. doi:10.3109/10408410903489576

Rusin M (2024) The p53 protein - not only the guardian of the genome. Postepy Biochem 70(1): 71-87. doi:https://doi.org/10.18388/pb.2021_518

Rustin P, and Kroemer G (2007) Mitochondria and cancer. Ernst Schering Found Symp Proc(4): 1-21. doi:https://doi.org/10.1007/2789_2008_086

Saraiva VS, Marshall JC, Cools-Lartigue J, and Burnier MN, Jr. (2004) Cytotoxic effects of violacein in human uveal melanoma cell lines. Melanoma Res 14(5): 421-424. doi:https://doi.org/10.1097/00008390-200410000-00014

Singh S, Gouri V, and Samant M (2023) TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 40(11): 335. doi:https://doi.org/10.1007/s12032-023-02204-5

Solé R, and Aguadé-Gorgorió G (2021) The ecology of cancer differentiation therapy. J Theor Biol 511: 110552. doi:https://doi.org/10.1016/j.jtbi.2020.110552

Su Z, Yang Z, Xu Y, Chen Y, and Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14: 48. doi:10.1186/s12943-015-0321-5

Szewczyk-Roszczenko O, and Barlev NA (2023) The Role of p53 in Nanoparticle-Based Therapy for Cancer. Cells 12(24). doi:https://doi.org/10.3390/cells12242803

Vaishnav P, and Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29(2): 223-229. doi:10.1016/j.biotechadv.2010.11.006

Vander Heiden MG, Cantley LC, and Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930): 1029-1033. doi:https://doi.org/10.1126/science.1160809

Venegas FA, Köllisch G, Mark K, Diederich WE, Kaufmann A, Bauer S, Chavarría M, et al. (2019) The Bacterial Product Violacein Exerts an Immunostimulatory Effect Via TLR8. Sci Rep 9(1): 13661. doi:https://doi.org/10.1038/s41598-019-50038-x

Venkatramanan M, and Nalini E (2024) Regulation of virulence in Chromobacterium violaceum and strategies to combat it. Front Microbiol 15: 1303595. doi:https://doi.org/10.3389/fmicb.2024.1303595

Verinaud L, Lopes SC, Prado IC, Zanucoli F, Alves da Costa T, Di Gangi R, Issayama LK, et al. (2015) Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells. PLoS One 10(5): e0125409. doi:https://doi.org/10.1371/journal.pone.0125409

Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, et al. (2021) The double-edged roles of ROS in cancer prevention and therapy. Theranostics 11(10): 4839-4857. doi:https://doi.org/10.7150/thno.56747

Xu HD, and Qin ZH (2019) Beclin 1, Bcl-2 and Autophagy. Adv Exp Med Biol 1206: 109-126. doi:https://doi.org/10.1007/978-981-15-0602-4_5

Yaacoub K, Pedeux R, Tarte K, and Guillaudeux T (2016) Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer Lett 378(2): 150-159. doi:10.1016/j.canlet.2016.05.012

Yan RL, and Chen RH (2022) Autophagy and cancer metabolism-The two-way interplay. IUBMB Life 74(4): 281-295. doi:https://doi.org/10.1002/iub.2569

Yan SF, King FJ, Zhou Y, Warmuth M, and Xia G (2006) Profiling the kinome for drug discovery. Drug Discov Today Technol 3(3): 269-276. doi:https://doi.org/10.1016/j.ddtec.2006.09.012

Yang X, Zhuang J, Song W, Shen W, Wu W, Shen H, and Han S (2023) Mitochondria-associated endoplasmic reticulum membrane: Overview and inextricable link with cancer. J Cell Mol Med 27(7): 906-919. doi:https://doi.org/10.1111/jcmm.17696

Yogini K, Waman M, and Rajashree P (2022) Violacein: A Promising bacterial secondary metabolite. Research Journal of Chemistry and Environment 26(6): 13.

Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, and Miri SR (2021) The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes & Diseases 8(3): 287-297. doi:https://doi.org/10.1016/j.gendis.2020.06.005

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.