EVALUASI CACAT PENGERINGAN DAN PEMESINAN PADA EMPAT JENIS KAYU CEPAT TUMBUH TERMODIFIKASI PANAS
Main Article Content
Abstract
Heat treatment is one method that can improve the quality of wood including for fast-growing wood species. However,
this treatment can cause some drying defects as well as the change of machining properties after applying that heat
treatment. The purpose of this study was to evaluate the effect of wood species and heating time on the drying and
machining defects. The fast-growing wood species used were teak, mangium, jabon, and sengon. The heat treatment
was carried out at a temperature of 165°C with variation in time were 0 (control), 2, and 6 hours. The result showed
that the moisture content and wood density decreased after heat treatment. Heat treatment was succeeded to decrease the
moisture content of 57% and caused a decreasing of density until 20% compared with control wood. The drying defects
of end checks in teak, mangium, jabon and sengon increased after 2 and 6-hour heat treatment. In the other hand, the
surface checks defect of teak, mangium, sengon and jabon were decreased. The defects after applying machining activities
i.e. the defects of sanding, planing, shaping, and boring were decreased in teak, mangium, jabon and sengon after heat
treatment of 2 and 6-hour. Jati was the best wood species in term of machining quality followed by jabon, mangium,
and sengon after heat treatment. At the temperature of 165°C in 2 hours could be considered as the appropriate time
for heat treatment in term of obtaining minimal defects of drying and machining.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
(ASTM) American Society for Testing and Materials. 2004. Standar Test Method for Conducting Machining Tests of Wood and Wood-Base. Materials ASTM D 1666-84. Philadelphia (USA): ASTM International.
Candelier K, Hannouz S, & Elaieb M. (2015). Utilization of temperature kinetics as a method to predict treatment intensity and corresponding treated wood quality: Durability and mechanical properties of thermally modified wood. Maderas Ciencia Technology. 17(2), 253-262. doi:10.4067/S0718-221X2015005000024.
Esteves B, Videira R, & Pereira H. (2011). Pine wood extractives. Wood Science Technology. 45, 661–676. doi:10.1007/s00226-010-0356-0.
Esteves BM & Pereira HM. (2009). Wood modification by heat treatment: A review. BioResources. 4(1), 370–404.
Fatomer B, Bakar A, Hiziroglu S, & Tahir P. (2013). Properties of some thermally modified wood species. Materials and Design. 43, 348–355.doi:10.1016/j.matdes.2012.06.054.
Fernando L, José DM, Brito O, Maria A, Lis N, & Uliana R. (2011). Effect of thermal rectification on machinability of Eucalyptus grandis and Pinus caribaea var . hondurensis woods. European Journal Wood Products. 69, 641–648. doi:10.1007/s00107-010-0507-x.
Franc J. (2008). Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polymer Degredation and Stability. 93, 401-405. doi:10.1016/j.polymdegradstab.2007.11.017.
Ginoga B. (1995). S i f a t p e n g e r j a a n k a y u sengon { Paraserianthes falcataria Backer .). Jurnal Penelitian Hasil Hutan. 13(4), 127–131.
Gurau L, Irle M, Campean M, Ispas M, Buchner J. (2017). com Surface quality of planed beech wood ( Fagus sylvatica L.) thermally treated for different durations of time. BioResources. 12, 4283–4301.
Karlinasari L, Lestari AT, & Priadi T. (2018). Evaluation of surface roughness and wettability of heat-treated , fast-growing tropical wood species sengon (Paraserianthes falcataria L.I.C. Nielsen), jabon (Anthocephalus cadamba (Roxb.) Miq ), and acacia (Acacia mangium Willd .). International Wood Products Journal. 1–7. doi:10.1080/20426445.2018.1516918.
Lukmandaru G, Susanti D, Widyorini R. (2018). Chemical properties of modified mahogany wood by heat treatment ). Jurnal Penelitian Kehutanan Wallacea. 7, 37–46.
Ogata K, Fujii T, & Abe H. (2008). Identification of the timbers of Southeast Asia and the Western Pacific. Holzforschung. 62, 765. doi:10.1515/HF.2008.132.
Pandit IKN, Nandika D, & Darmawan IW. (2011). Analisis sifat dasar kayu hasil hutan tanaman rakyat. Jurnal Ilmu Pertanian Indonesia. 16(2), 119–124.
Priadi T & Hiziroglu S. (2013). Characterization of heat treated wood species. Material and Designs. 49, 575–582. doi:10.1016/j.matdes.2012.12.067.
Ratnasingam J & Ioras F. (2012). Effect of heat treatment on the machining and other properties of rubberwood. European Journal Wood Products. 70, 759–761. doi:10.1007/s00107-011-0587-2.
Siarudin M, Widiyanto A, & Agency D. (2016). Sifat pemesinan kayu dolok diameter kecil jenis manglid. Ciamis: Balai Penelitian Teknologi Agroforestry.
Rianawati H & Setyowati R. (2015). Perbedaan sifat pemesinan kayu timo (Timonius sericeus (Desf) K . Schum.) dan kabesak (Acacia leucophloea (Roxb.) Willd.) dari nusa tenggara timur. Jurnal Penelitian Kehutanan Wallace. 4, 185–192.
Supriadi A. (2017). Sifat pemesinan lima jenis kayu kurang dikenal. Jurnal Penelitian Hasil Hutan. 22(3), : 85-100. doi:10.18343/jipi.22.3.205.
Supriadi A. (2018). Sifat pemesinan lima jenis kayu asal riau. Jurnal Penelitian Hasil Hutan. 36(2):85–100.
Taylor P, Bal BC, & Bekta İ. (2013). The effects of heat treatment on some mechanical properties of juvenile wood and mature wood of Eucalyptus grandis. Drying Technology: An International Journal The Effects of Heat Treatment. 37–41.doi:10.1080/07373937.2012.742910.
Taylor P, Gunduz G, & Aydemir D. (2009). Some physical properties of heat-treated hornbeam (Carpinus betulus L.) wood some physical properties of heat-treated hornbeam (Carpinus betulus L .) wood.. Drying Technology : An International Journal . 27, 714–720. doi:10.1080/07373930902827700.
Taylor P, Srinivas K, & Pandey KK. (2012). Effect of heat treatment on color changes , dimensional stability , and mechanical properties of wood. Journal of Wood Chemistry and Technology. 32, 304-316. doi:10.1080/02773813.2012.674170.
Listyanto T, Rahman F & Swargarini H. (2016). Kualitas pengeringan kayu mahoni pada berbagai variasi kerapatan. Jurnal Ilmu Kehutanan. 10(2), 119–128.
Tenorio C, Moya R, & Quesada-pineda HJ. (2012). Kiln drying of acacia mangium wood : colour , shrinkage , warp , split and check in dried lumber. Journal of Tropical Forest Science. 24(1), 125–139.
Tu D & Zhou Q. (2017). Effects of heat treatment on the machining properties of Eucalyptus urophylla dan E. camaldulensis. BioResources. 9(2), 2847-2855. doi:10.15376/biores.9.2.2847-2855.
Uribe BEB & Ayala OA. (2015). Characterization of three wood species (Oak , teak and chanul ) before and after heat treatment. Journal Indian Acad Wood Science. 12(1),54-62. doi:10.1007/s13196-015-0144-4.
Winandy JE & Shupe TF. (2010). From hydrophilicity to hydrophobicity : A critical review: Part i. Wettability and surface behavior. Wood and Fiber Science. 42(4), 490-510.