POTENSI STRUKTUR NANO KARBON DARI BAHAN LIGNOSELULOSA KAYU JATI DAN BAMBU

Main Article Content

Gustan Pari
Adi Santoso
Djeni Hendra
Buchari
Akhirudin Maddu
Mamat Rachmat
Muji Harsini
Teddi Her anto
Saptadi Darmawan

Abstract

Nanotechnology research in the realm of forest products can be exploited from lignocellulose into nano carbon. The research was aimed to provide the potency of nano carbon structure from lignosellulose as bioenergy or biosensor material. O The materials of teak wood and bamboo were carbonized into charcoal at 400-500 C followed by activation using O chemical and physical processes at 800 C for 60 minutes. This process produced charcoal with high crystalinity and surface area. After purification and activation, the activated charcoal was subsequently doped process with Zn and Ni metals which O then followed by sintering using spark plasma at 1300 C. The qualities and structure of all the resulting carbon were evaluated using nano scale devices i.e. Pyrolysis Gas Chromatography Mass Spectrometer, Scanning Electron Microscope Energy Diffraction X-ray Spectrometer, X-ray Diffractometer, I-V meter and potensiometer. Results showed that the best activated charcoal produced from the chemical-physical activation (KOH steam) possessed high fixed carbon of 84.29%; 2 surface area of 850.5 m /g, crystallinity of 38,99% and resistancy of 0.10. The teak activated charcoal which intercalated by Ni at ratio of 1:5 produced the best properties with crystallinity degree of 73.45% and conductivity of 433.86 S/m. The sintered teak activated charcoal had crystallinity degree of 78.29% with I-V meter pattern in sigmoid shape and the potentiometer response formed a slope approaching the Nerst factors. Nano carbon produced from lignocellulose is a semiconductor and more suitably use for biosensors, particularly the one derived from teak wood.

Article Details

How to Cite
Gustan Pari, Adi Santoso, Djeni Hendra, Buchari, Akhirudin Maddu, Mamat Rachmat, … Saptadi Darmawan. (2025). POTENSI STRUKTUR NANO KARBON DARI BAHAN LIGNOSELULOSA KAYU JATI DAN BAMBU. Jurnal Penelitian Hasil Hutan, 34(4), 309–322. https://doi.org/10.20886/jphh.2016.34.4.309-322
Section
Articles

References

Barsukov, 2003. New carbon based materias for electrochemical energy storage system. Springer, Netherland.

Bansode, R.R. Losso. J.N. Marshall. W.E. Rao. R.M. and Portier. R.J. 2003. Adsorption of volatile organic compound by pecan shell- and almond shell-based granular activated carbons. Bioresource Technology 90: 175-184.

Bonelli, P.R. Rocca. P.A.D. Cerrela. E.G. and Cukierman. A.L. 2001. Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil Nut shell. Bioresource Technology 76: 15-22.

Guo, J. 2007. Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell. Carbon 44: 330-336.

Hartoyo, N. Hudaya, dan Fadli. 1990. Pembuatan arang aktif dari tempurung kelapa dan kayu bakau dengan cara aktvasi uap. Jurnal Penelitian Hasil Hutan 8 (1): 8-16. Bogor. Pusat Penelitian dan Pengembangan Hasil Hutan.

Iguchi M. 1997. Practice of polymer X-ray diffraction. Bandung. Bandung Institute of Technology.

Ismadji, S., Y. Sudaryanto, S.B. Hartono, L.E.K. Setiawan, and Ayucitra. A. 2005. Activated carbon from char obtained from vacuum pyrolysis of teak dust: pore structure development and characterization. Bioresource Technology 96: 1364-1369.

Pari, G. 2004. Kajian struktur arang aktif dari serbuk gergaji kayu sebagai adsorben emisi formaldehida kayu lapis. Disertasi Program Studi Ilmu Pengetahuan Kehutanan. Bogor. Sekolah Pasca Sarjana IPB.

Pari, G., Buchari, Santosa, A., Darmawan, S., Harsini. M. Racmat, M., Hendra, DJ. Heryanto, T., dan Maddu. A. 2013. Karakterisasi struktur nano karbon dari lignoselulosa. Jurnal Penelitan hasil hutan, Bogor 31 (1): 75-91.

Qin, W., Liang, R., and Zhang, R. 2009. Potensiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sensor and Actuators . 141: 544-550

Ruiz V., R. Santamaria, J.M. Ramos-Fernandez, M. Martinez-Escandella, Sepulveda-Escribano, and Rodriguez-Reinoso. F. 2009. An activated carbon manilith as an electrode material for supercapasitor. Carbon 47: 195-200.

BSN, 1995. Arang aktif teknis. Standar Nasional Indonesia (SNI) 06-3730-1995 . Badan Standardisasi Nasional. Jakarta.

Suzuki, K., Yamada, T and Suzuki. T. 2007. Nickel-catalyzed carbonization of wood for co-production of functional carbon and fluid fuel: Production of dual functional nano-carbon by two steps carbonization. Journal of the Society of Materials Science. 56 (4): 339-344

Yasuda, E., Inagaki, M., and Kaneko, K., 2003, Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology, Elsevier Science Ltd., Kidlington

Yu-Li. Li. QY. Lin. L. Wang. Y.F. Chu-Hua Zhang. and Hong-Qiang Wang. 2009. Facile synthesis of activated carbon/carbon nanotube compond for source superkapasitor apllication. Chemical Enginering

Zhizhou Li., Xiaoli C., Junsheng Z., Qing F., and Yuehe L. 2007. Effect of microstructure of carbon nanofiber for amperometric detection of hydrogen peroxide. Analytica Chimica Acta 597 (2007) 238-244.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.